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PREFACE

This publication is a compilation of the papers presented at the Symposium on
Multigrid Methods held at Ames Research Center on October 21-22, 1981. The papers
represent an international sampling of the most recent developments in numerical
solution of certain types of pagtial differential equations by rapidly converging
sequences of operations on supporting grids that range from very fine to very coarse.

The symposium was organized for the purpose of bringing together scientists
having individual experience with, and a common interest in, multigrid processes.
For the most part the common ground of these processes is an underlying matrix that
is either precisely, or "close to," one which is positive definite, diagonally domi-
nant, and similar to the Laplacian. Considerable progress has been made in identify-
ing processes that have this common ground, in standardizing techniques best suited
for optimizing their solution, and in extending these techniques to processes that
have slight deviations from the standard.

At present, published material that has shown the most dramatic success in pro-
viding rapid convergence is limited to physical problems related to the incompres-
sible Navier-Stokes equations or the irrotational forms of the Euler equations
(potential or Cauchy~Riemann formulations). It is hoped that this publication will
provide further knowledge and information that can be applied to the soclution of com-
pressible Navier-Stokes equations.

Harvard Lomax
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MULTILEVEL TECHNIQUES FOR NONELLIPTIC PROBLEMS#*
Dennis C. Jespersen

Department of Mathematics, Oregon State University

SUMMARY

Multigrid and multilevel methods have gained much attention lately and show
great promise for the solution of elliptic problems. This paper sets up a framework
for analyzing these methods with a view to extending their applicability to non-
elliptic problems. A simple nonelliptic problem is given, and it is shown how a
multilevel technique can be used for its solution. Emphasis is on "smoothness"
properties of eigenvectors and attention is drawn to the possibility of "condition-
ing'" the eigensystem so that eigenvectors have the desired smoothness properties.

1. INTRODUCTION

The purpose of this paper is to investigate the applicability of multigrid and
multilevel methods for the numerical solution of partial differential equations that
are not of the elliptic type. First an exposition of one means of analyzing ''classi-
cal” multigrid techniques will be presented and then extended to deal with some
simple nonelliptic problems. Throughout, the emphasis will be on analyzing and under-
standing how the various components of a successful multilevel process fit together,
and not on the solution of practical problems. In particular, all the model problems
presented here will be set in one space dimension. The analysis will concentrate on
linear problems, though some remarks will be made on nonlinear problems; a thorough
understanding of the linear case is an essential prerequisite for tackling nonlinear
problems. The focus of the analysis will be on eigenvalues and eigenvectors.

A brief description of a standard multigrid procedure is as follows. We are to
approximate the solution of some partial differential equation. Discretize the prob-
lem on a grid T! wusing (say) finite differences, giving a (large) linear system

Ay = 5 L

(Here the subscript b stands for "basic.") Some preconditioning procedure may be
applied to this system, for example premultiplication of both sides of (1) by a
matrix C, giving the system

Alul = £1 (2)

where A! :=¢ Ay £ :=¢ fy, and ul := up. On the grid T, let uo1 be some
initial guess at the solution u*l. Perform a few steps of some relaxation process,
say

uO1 -> un1 i= G(uol,fl) (3)

*Funds for the support of this study have been allocated by the Ames Research
Center, NASA, Moffett Field, California, under Interchange No. NCA2-OR586-001.



where G denotes the relaxation process. Let r', the residual, be defined by

rl: = £ - Alunl. Now, (1) is equivalent to

Ate! = ¢? (4)
for the solution u*1 is then given by u*l = up’ + e'. In order to solve (4),
somehow transfer the problem to a coarser grid r?, solve

A2a2 = p2 (5)

on the coarser grid, transfer e? back to the fine grid, and replace un1 by un1
plus the transferred e?. These transfers can be formalized by denoting by R! and
R! ‘"restriction" operators from grid functions on T! to grid functions on T2, and
1! and I "interpolation'" operators from grid functions on TI'? to grid functions on
T'l. The transfer operators are then used to define A? := R'A'T' and r? := Rlr!;
the problem on the coarser grid is then AZe? = r2, and e! is defined as

el: = I'e® once e? has been found. In a true multilevel process e? would be
approximated by using still coarser grids, but the basic ideas can be seen in the
analysis of the two-level process. The keys to constructing a successful process are
the relaxation process G, the restriction operators R' and R', and the interpola-

tion operators I' and I'.

The framework of the analysis is similar to that of Brandt (1977), Hackbusch
(1978) , McCormick (1979), Wesseling (1980), and Frederickson (1975). The operator
here called "restriction'” (from functions on the fine grid to functions on the coarse
grid) is called an "averaging operator" by McCormick, an "interpolation operator" by
Brandt, a "collection operator" by Frederickson, and a "restriction operator" by
Hackbusch and Wesseling. The operator here called "interpolation" is called "inter-
polation" by McCormick and Brandt, and is called a "prolongation operator" by
Hackbusch and Wesseling. Previous authors have taken R = Rl, 1t = Il, and either
R = (z1)T or R! = (comstant)*(1%)T.

It should be noted that the difference between the computed solution and the
exact solution, that is, the error, is not the focus of this work. It will always be
assumed that an appropriate discretization of the partial differential equation has
been derived and a discrete set of equations obtained. The job then is to solve the

discrete set of equations very efficiently.

SYMBOLS

B(a,b,c) tridiagonal matrix with b on main diagonal, a on subdiagonal, and ¢
on superdiagonal

e error (exact solution of discrete equations minus some approximation)
G relaxation operator
1t interpolation operator from grid i + 1 to grid i

P permutation matrix (a matrix whose entries are either 0 or 1, and such that
each row and column has exactly one 1)

restriction operator from grid i to grid i+ 1
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T residual (f - Au)

quantity on left is defined as quantity on the right

Superscript:

i relates to the ith grid (grid 1 = finest grid)
Subscript:

n nth step of an iteration process on a fixed grid

2. A RELAXATION PROCESS

In this section we will be working on a fixed grid T and will therefore omit
the superscripts denoting the grid level. A basic component of a multilevel scheme
is the relaxation process. The relaxation process we will consider is the simple and
general Richardson process. Given the linear system

Au = f (6)

and an initial guess wu,, one step of the Richardson process with step-size h is
defined by

u; :=u, + h(Au, - £) (7)
The common relaxation processes, such as the Jacobi, Gauss—-Seidel, SOR, ADI, and
their block variants, can all be written as the Richardson process applied to equa-

tion (6) or to a preconditioned form of equation (6). For example, the Gauss-Seidel
process is the Richardson procedure with h =1 applied to

(L + D) 'Au = (L + D)7 'f
where L and D are the lower triangular and diagonal parts of A, respectively.

A few elementary remarks about the algorithm given in equation (7) are in order.
If equation (7) is iterated, that is,

Uopr S5 Y + h(Aun-f) for n=>0

it is a standard result that u; converges to the exact solution u, of equation (6)
for any initial guess wup, if and only if the spectral radius of the iteration matrix
I + hA is less than 1. Suppose now we allow the step sizes to vary, that is,

LSUEEL I U + hn(Aun - £) for n>0 (8)

If A has a complete set of eigenvectors {vm}, say Avy = Apvp, then the error
e, :=u, - u, satisfies epy; = (I + hyA)e, and so, if e, = % oqVps then

n-1
en = E( o+ hj)\m)) 0Lmvm (9)

m \j=0



From equation (9) it is evident that the error can (in theory) be reduced to
zero in a finite number of steps by choosing a sequence of step sizes such that each
h is -1 divided by an eigenvalue of A. This is usually quite impractical. We
might consider trying to choose the step sizes to be approximately -1 divided by an
eigenvalue of A. This is more practical; indeed, if h;, * -1/),, then the component
of e; in the direction of v has been greatly reduced. Pursuing this idea
further leads one to study the possibility of choosing a set of step sizes

{hj, 0 £ j < n - 1} for some given n such that the polynomial

n-1

p(z) := 1T (1 + h.z)
. ]
j=o

has minimal modulus for 2z in some set in the complex plane that contains the nega-
tive reciprocals of the eigenvalues of A. This leads to the study of Chebyshev
iterative methods, a topic that has been explored by many authors (for recent work in
this area see Manteuffel, 1977; McDonald, 1980). Instead of carrying out a full
Chebyshev process, the plan here is to use the nonstationary Richardson process to
reduce the components of the error in some directions v,; and then to proceed with

another idea.

It will be important that no error component be magnified by the Richardson
process. From equation (9), we see that this requires ll + hxml <1 for all eigen-
values )\, of A, so that h is in the intersection of the disks in the complex
plane with centers -1/i; and radii ll/Km[. Alternatively, given h we ask that
all eigenvalues of A 1lie in the disk with center =-1/h and radius |l/h]. We
might call this disk the stability region for step size h (see fig. 1).

To have a large stability region (and
thereby have the stability region contain all
the eigenvalues of A, if the eigenvalues of
A are widely separated), we see that h will
have to be small. If h is small, the eigen-
vectors that are substantially diminished by
one Richardson sweep with step size h are
the eigenvectors associated with eigenvalues

T of modulus [1/h|, that is, eigenvalues of

-1/h . . ,
large modulus. Eigenvectors associated with
eigenvalues of small modulus are hardly dimin-
ished by a Richardson step with small |h|.
Loosely speaking, we might say that large
eigenvalues are easy to eliminate and that
small eigenvalues are difficult to eliminate
(stably). The first part of the overall
process will be the diminishing of (the eigen-
vectors associated with) the eigenvalues of
large modulus by one or more Richardson steps

Figure 1.~ Stability region for with appropriately chosen step sizes.

step-size h.

If the original partial differential equa-
tion is not self-adjoint, the matrix A will probably have nonreal eigenvalues. To
annihilate (nearly) the error component in the direction of an eigenvector associated
with a nonreal eigenvalue, the step size h would have to be complex. In the inter-
ests of avoiding complex arithmetic, however, we note that, if A 1is a real matrix
(as it is in most applications), then its eigenvalues come in complex conjugate pairs.

4
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This leads one to consider a variant of the Richardson process in which a step with
complex h is immediately followed by a step with the complex conjugate h. The
equations are thus

1/2 = u, + h(Au0 - £) (10a)

u, := L) + E(A.ul/2 - f) (10b)

Substituting equation (10b) into (10a) gives
u; = uy + 2(Re h)(Au, - £) + |h|%A(Ay, - f) (11)

where Re h denotes the real part of h. One notes that equation (11) can be car-
ried out in real arithmetic and still annihilate the error components in the direc-
tions of the complex eigenvectors associated with A := -1/h and X- If h is a good
approximation to -1/A for some eigenvalue A, then the error component in the
direction of the eigenvectors associated with X and X will be substantially reduced
(reduced by a factor of |1 + Ah|?).

It is again important to inquire into the stability properties of the iteration.
Given a (complex) step size h, the set of eigenvectors that are not amplified by
equation (11) is the set of eigenvectors belonging to eigenvalues XA such that

|1 + ah| |1 + AR| < 1, that is, [A + 1/h]| |x + 1/R| < 1/]|n]|?

This defines a region in the complex plane

whose boundary is called an oval of Cassini;
in the special case when Re h = 0, this
reduces to a lemniscate (two-leaved rose;
fig. 2).

Again we see that to have a large sta-
bility region, |h| will have to be small, so
that the (eigenvectors associated with)
eigenvalues of large modulus will be easy to
diminish, and the (eigenvectors associated
with) eigenvalues of small modulus will be
difficult to diminish. Also note that for a

small |h| the Richardson step

upy, = u, + h(Aun - f) is the explicit Euler
method applied to the time integration of
du/dt = Au - f. Time-like methods will reach
steady-state solutions, but will require a
large amount of computation to do so. If we
are interested in only the steady-state
solution, we are free to use methods that are
not time accurate.

To conclude this section, the generality
of the Richardson process should again be

emphasized. As noted above, the usual itera- FOCI = 1.0034 + 2.36171

tive methods can be written in the form of a

Richardson process. The considerations of

eigenvector decomposition lead us to use the Figure 2.~ Oval of Cassini.

5



following as a rule of thumb: The large eigenvalues are easy to eliminate. The
difficult problem is to stably and rapidly eliminate small eigenvalues. We will
attempt to do this by combining a Richardson process with a multilevel procedure.

3. A MODEL ELLIPTIC PROBLEM

The goal of this paper is the study of multilevel methods as applied to nonellip-
tic problems. Nevertheless, in this section we will look at a model one-dimensional
elliptic problem and show how the analysis proceeds. The hope is that looking at
this familiar problem will give confidence in the analytical techniques when they are
used to study nonelliptic problems. Consider then the simple problem (which was also
used as a model problem by Hackbusch, 1978):

u"'(x) = £(x), 0 <x <1
(12)
u(0) = 0, u(l) =0
We discretize equation (12) on a uniform grid with points =x: := jAx,

0<3j<M+1 where M is an odd integer and Ax := 1/(M + 1). “The standard
second-order centered-difference scheme for (12) gives the linear system A'u! = fl,
where Al is the M by M tridiagonal matrix B(1,-2,1), and f is the vector with
entries f(xj)(Ax)z,l < j £ M. (Recall that B(1,-2,1) denotes the tridiagonal
matrix with -2 on the main diagonal and 1's on the sub- and superdiagonals.) The
eigenvalues of Al are

Ap = -2{1 - cos[mn/(M + 1)1} = -4 sin?[mw/(2M + 2)], 1 <m < M (13)

with corresponding eigenvectors v, where

(vm)j = gin[jmr/MM + 1)1, 1 < j,m<M (14)

Note that the eigenvectors associated with eigenvalues of large modulus are
highly oscillatory, and the eigenvectors associated with eigenvalues of small modulus
are '"'smooth." Thus, given some initial guess, a few Richardson sweeps with appro-
priate step sizes will substantially reduce the "high-frequency" component of the
error. This idea seems to be one of the motivating ideas for the multigrid method
for elliptic equations; high-frequency components of the error correspond to eigen-
values of large modulus and are easy to diminish by an appropriate relaxation tech-
nique which is thought of as "smoothing." (We will see that use of the term "smooth-
ing" may not be appropriate for nonelliptic problems; the term "relaxation" will be

used in this paper.)

After a few relaxation steps the residual !l = f! - AIG(uol,fl) should consist

mostly of "low frequencies" and be well representable on a coarser grid. Letting T?
denote the initial fine grid and T? denote the grid with mesh spacing 2Ax, a

restriction operator from functions on the fine grid to functions on the coarse grid
is representable as a mapping from RM to Rr(M-I 2, Euclidean M-space to Euclidean

M - 1)/2-space.

For example, if we simply transfer the even-subscripted components of the
residual r' to the grid T2, then R' is the (M - 1)/2 by M matrix



.
e

0 o o0 . . .
0 0 01 0 O

0 00 0 0 1
R! = (15)

L ° o
Another possibility is a linear averaging procedure, which would give

-

1/4 1/2 1/4 0 0 0 0 )
0O 0 1/4 1/2 1/4 0 0

0 0 0 0 1/4 1/2 1/4
R = (16)

. ]
from functions on the coarse grid to functions

The interpolation operator It
One possibility is linear inter-

on the fine grid is a mapping from RM-1)/2 ¢5 R

polation from the even-numbered grid points to the odd—numbered grid points. In this
case, the matrix representation of 1I! would be
/2 o o . . .
1 0 0
1/2 1/2 0
0 1 0
0 1/2 1/2
1t = (17)
0 0 1
0 0 1/2

Another possibility is an implicit cubic polynomial interpolation, defined as

follows.
for j even and unknown for

j odd (an
let pi(t) be the polynomial of degree at most 3 which satisfies

Xy i= jax). For

7

Consider a set of data {(x;,yi):1 £ j < M}, where we assume ¥j
3<k<M-2 andk odd,

Pk(xj) =

is known

for



j=k-2,k- 1,k + 1,k + 2. Define yi := pr(xk). Thus yy 1is linearly related
to the known values yyp_,» Yy4+; and the unknown values yy-_3, Vk+2- For k =1,
let p,(t) be the polynomial of degree at most 3 which satisfies p;(0) = 0,

pl(xz) = Y, pl(x ) = Vs pl(x“) =y,; define y, := p;(x;). Define YM—1 in a
similar manner. 2Note that the definition of v, would have to be modified if the
left-hand boundary condition were of the Neumann type; if the boundary condition for
the differential equation were u'(0) = 0 then p, would be required to satisfy
pi(O) = 0 instead of p,;(0) = 0.) The result is a linear system

Byodd = Cyeven (18)

where yoad = (¥15¥3> - - .,yM)T, Yeven = (F2sVyus - .,yM_l)T, B 1is the
M+ 1)/2by M+ 1)/2 tridiagonal matrix:

o1 i
1 6 1
1 6 1
B = (19)
1 6 1
| 11

and C is the (M + 1)/2 by M - 1)/2 tridiagonal matrix:

[3/2 1/4 7
4 4
4 4
C = (20)
4 4
| 1/4 3/2]

For the cubic interpolation, one would then define

1. Ty I

where P 1is the "even-odd" permutation matrix, which satisfies

T T
P(vl, . . .,VM) = (vz,vu, s sV eV Vs .,VM)

and I 1is the identity matrix of order (M - 1)/2.

8



In either case, the coarse-grid problem is defined to be RIAl1e? = erl, and
then e is approximated by I'e?. One can calculate that with A! as above, R?!
given by equation (15), and 1! given by (17), the matrix R*AYIY is the
M-1)/2 by (M- 1)/2 matrix:

RIAlT! =-% B(-1,2,-1) (21)

This is (up to a scaling factor) the difference operator that would have resulted
from discretizing the original differential operator on the coarser grid r2,

One complete step of the two-level process is defined by ul1 := Ie? + Glu .

This can be written as a matrix iterative process as follows. Let

P be the even-
odd permutation matrix defined above. The problem

Alel = ¢l

is equivalent to the problem

PalPT) (Pel) = Prlt (22)
which is, in block form,
Al A tlel? r !
1
2 a _ a (23)
1 1 1 1
A3 Aq eb rb

where subscript a refers to the even unknowns and the subscript b refers to the
odd unknowns.

The first block equation of equation (23) reads

Allea1 + Azlebl = ral 24)

If we make the approximation ebl = Ié,beal for some operator I;,b’ then (24)
becomes

a,' + AZII; b)eal = ral (25)

which is equivalent to (RlAlIl)e2 = R'r' in case the operator R?
the matrix Ié,b can be given by (for example)

[1/2 1

1/2 1/2

is given by (15);

) .
Ia,b = (26)

1/2 1/2

| 1/2 ]

gt

I

L



which corresponds to linear interpolation as in (17), or by

I;’b = B~1cC 27)

where B and C are the matrices from the implicit cubic interpolation process
defined above.

After solving (25), we have

1 1 101 -1
e (A + A, 1 )
a 1 2
el = PT = PT a,b T

1 1 1 1¢1 -1
e LN CLIL Y Vis S0

1
a

) I 0 (28)

[ At + a1
ay, Prl

b

1 1 11 -1
Ea,b(Al + A, Ia,b) 0

plsprl

and thus
L = plsp(£? - Alglu,?) + Glu,’
T

=
[

(29)

(1 - pTsPal)Glu,* + PTsps?

One step of the iteration process is thus one step of a stationary iterative
process with iteration matrix

T := (I - PspAl)Gt (30)

The rate of convergence of the process is controlled by the spectral radius of the
matrix T.

The operators I! and R! can be identified from (28) as

R! = [I]o]P (31)

It = PT[——}—] (32)
I
a,b

Other authors (McCormick, 1977; Wesseling, 1980) have suggested that the condi-
tion It = (Rl)T or I! = (constant)*(Rl)T be enforced; an obvious way to do this
is to replace (31) by

and

Rl = %—[I](I;,b)T]P (33)

Numerical tests with both possibilities are reported below.

10



Some numerical experiments were carried out in which the eigenvalues of the
overall iteration matrix T were computed for different numbers of grid points, dif-
ferent interpolation and restriction operators, and varying relaxation procedures.
The relaxation procedure G' was of the form

k
Gl = II (I + h.AY)
j=2 ]

(i.e., the relaxation procedure consisted of k Richardson sweeps), where

k e {0,1,2,3} and he {1/2,1/3,1/4} (note that the stability condition of section 2,
|l + Ahl < 1, becomes in this case 0 < h < 2/{4 sin?[mr/(2M + 2)]}}, 1 < m < M, so
1/2 is effectively an upper bound for h. Some results for the cases M € {7,11}, 1?
given by (32) and (26) ("linear interpolation'") or by (32) and (27) ("cubic interpo-
lation"), and R given by (15) or by (33). A selection of results from these com-
putations is given in table 1.

From table 1 we see that the total process will not converge if k = 0, that is,
if no relaxation sweeps are used. (This is also clear from the definition of T and
from the fact that S is a rank-deficient matrix; see eq. (30).) With linear inter-
polation, the results with R given by (15) are identical with the results when R
is given by (33), but we have no formal proof of this. From the output, there seems
little point in using more than one relaxation sweep with linear interpolation. In
two of the cases presented, the spectral radius of T is O; this does not imply that
the iterative process converges in one step, because, for these cases, it turns out
that T has nontrivial Jordan blocks in its Jordan canonical form, that is, n by n
blocks of the form

[0 1 B
0 1
0 1
L 0
with n > 1. In these cases, the total process would converge in n steps.

With cubic interpolation it appears there can be a substantial gain by perform-
ing more than one relaxation sweep on the fine level. Using the R! from (33) is
not as favorable as using R from (15). A full investigation of this has yet to be
undertaken.

Although not shown in table 1, computations with higher values of M revealed
that the spectral radius of T was virtually independent of the number of grid
points. This is an encouraging sign, and is the typical situation in this classical
multigrid situation (Brandt, 1977; Hackbusch, 1978). Also, the idea of eigensystem
mixing (Lomax, 1981, unpublished notes) may serve to further decrease the spectral
radius of T, leading to even faster convergence of the overall process. Finally, a
similar analysis can be carried out in the case when the differential equation has a
boundary condition of the Neumann type; appropriate modifications must be made in the
definition of the interpolation operator at a Neumann boundary.
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TABLE 1.- SPECTRAL RADIUS OF TOTAL PROCESS:
MODEL ELLIPTIC PROBLEM

Linear interpolation (The results with R?!
given by (33) are identical with those when R*'
is given by (15).)

M

7

11

WWHRFR,OWWWLNMNNN -~ O |®

h Spectral radius of T
- 1.0
1/2 0
1/4 .5
1/2, 1/2 .5
1/4, 1/4 .46
1/2, 1/4 .43
1/4, 1/4, 1/4 .45
1/2, 1/2, 1/2 0
1/2, 1/3, 1/4 .43
- 1.0
1/4 .5
1/2 0
1/2, 1/3, 1/4 47
1/4, 1/4, 1/4 47

(In the cases when T has spectral radius O,
T has nonlinear elementary divisors, i.e., the

Jordan canonical form of T

Cubic interpolation

11

WWNNRRHOWWNN=~O |

is not diagonal.)

Spectral radius of T

h R from (15) R! from (33)
- 1.0 1.0
1/2 1.0 .91
1/4 .5 .5
1/4, 1/4 .25 .46
1/2, 1/4 .25 44
1/4, 1/4, 1/4 .13 A
1/2, 1/3, 1/4 .08 42
- 1.0 1.0
1/2 1.0 .96
1/4 .5 .5
1/4, 1/4 .25 .48
1/2, 1/4 .25 47
1/4, 1/4, 1/4 .13 .47
1/2, 1/3, 1/4 .08 .46
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4. A MODEL NONELLIPTIC PROBLEM

The preceding section introduced some ideas and set up a framework for analysis
of a multilevel method for a model elliptic problem. In this section, we will begin
to investigate the applicability of multilevel methods to nonelliptic problems. The
model problem to be used is the steady-state version of u, + uy = £,

ue =f, 0<x<l1

u(0)

(34)

B

Introduce grid points Xy i= jax = j/ M+ 1), 0 j <M+ 1, M odd, and consider
second-order centered differences (leave aside for now the fact that centered differ-
ences are probably inappropriate for this particular problem; we have in mind systems
of equations describing subsonic flow for which centered differencing may be very
appropriate). The finite-difference equations are

uj+1 - uj_1 = 2Axf(xj) . lgsjsM-1 (35)
(where wu, := g,). At the right-hand boundary let us use a linear extrapolation
Upgy 5 ZuM - uy_, to derive from (UM, = um_,)/28x = £(xy) the equation
Uy T Uy, = Axf(xM) (36)
We get then the linear system Apup = fy, where
o -
0 1
-1 0 1
-1 0 1

A = (37)

i -1 1
and fy := 2Ax[f(x,), . . .,f(xM_l),f(xM)/Z]T

Most of the eigenvalues of A are complex; it is easy to show that all the
eigenvalues lie in the half-plane Re(z) > 0. Computations with M = 15 revealed
that, for this case, the eigenvalues lie on a curve from about 0.0026 *1.96i to
approximately 0.195. One possible way of treatlng the llnear system Apuy = f 1is
to premultiply by (—Ab ), giving the system (-Ay, Ab)ub = —Ab f, with a coefficient
matrix that is symmetric and negative deflnlte, thus analogous to the matrices that
arise when discretizing elliptic equations (see Lomax et al., 198l). A possible
problem with this idea is that the condition number of the matrix of the new linear
system is the square of the condition number of the original matrix, which may lead
to slow convergence of an iterative technique. 1In this paper, we wish to stay in the
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spirit of nonelliptic problems, however, and so we do not consider this possibility
further.

Another possibility for treating the linear system is to use some relaxation
method, such as the complex Richardson technique of section 2, to approximately elim-
inate the components of the error along the directions of the eigenvectors associated
with eigenvalues of large modulus, and then to transfer the error equation to a
coarser grid. For this idea to succeed, it is presumably the case that the eigen-
vectors associated with eigenvalues of small modulus should not fluctuate rapidly on
the fine grid, so that they are well representable on the coarse grid. Such is not
the case for the matrix Ap; indeed, A can be viewed as a perturbation of the
matrix B(-1,0,1), which has eigenvalues

1A
P
IA
=

Ak = 2i cos tk/(M + 1) , 1

and eigenvectors x(K) with

xgk) = i) gin grk/M+ 1), 1<i,k<M
all of which oscillate rapidly on the fine grid. Some of the eigenvectors of Ay
are shown in figure 3; in the figure, the horizontal axis is j, and the vertical
axis is vj (where Apv = Av, v = (v, . . .,VM)T).

Although the eigenvectors oscillate, there
is evidently a regularity about them which we

X can try to exploit. Let us try to find a sim-
L X ple transformation that will change the eigen-
. vectors associated with small eigenvalues from
x x X x rapidly oscillating to slowly oscillating.
x First, let P, be the "even-odd reversed"
X o permutation which is defined by
EIGENVECTOR 1; X\ =0.195
T
X
x 5 x X § Pz(vl, .. .,VM)
X
x X X oy % x X T
xxx N X x = (vz,vq, s eV Ve Vya o ¢ csVy)
X
X x x x . .
x The result of applying P to the eigenvectors
[N WY Y N E i1 L1 of figure 3 is shown in figure 4; the eigen-
EIGENVECTOR 2 (REAL AND IMAGINARY PARTS); . . .
A = 0.152 + 0.332i vectors associated with eigenvalues of small
x x x X modulus have become much smoother, though
N there is still a pronounced kink. To remove
N x x4 X x this kink, let F be the matrix that satisfies
*o X X X X
x « x X x < X vy if s M+ 1)/2
x (Fv), = (38)
x x X ] 2v -v, if j> (M+1)/2
L Xy L1 X1 (M+1) /2 J

EIGENVECTOR 15 (REAL AND IMAGINARY PARTS);

A = 0.00264 + 1.96i For example, if M = 7, then F dis the matrix

Figure 3.~ Eigenvectors of Ap
(see (37)); M = 15.
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1 0 0 0 0 0 0]
0 1 o 0 0 0 O x
6 0O 1 0 0 0 o0
x x
60 0 O 1 0 0 O X
0 0 0 2 -1 0 0 X X
X X X
0 0 0 2 0 -1 0 % X x
0 0 o6 2 0 0 -1 X
_ X
(Note that F ' = F.) The result of applying X o .
F to the vectors of figure 4 is shown in ' T EIGENVECTOR 1
figure 5. The eigenvectors associated with
eigenvalues of small modulus are now slowly
varying, and the eigenvectors associated with %
eigenvalues of large modulus (which we do not X X
care about anyway, since their contribution %
to the error is destined to be removed by a X X
few Richardson sweeps) are still rapidly X X X
varying. We might call F a "reflection" X
matrix. X X
Now, the basic linear system Apuy = £y x X
is equivalent to
T -1 1 ) I I
(FPzAbPz F )(Fqub) = Fszb (39) - HéENVECTORZ(REALPARﬂ
X
Alul = £ (40)
X
where A := FP,AP,TF™' = FP AP, TF (since y
F~" = F). For the case M = 7, it turns out X x X
that Al is given by X
X % X
[0 0 0 0 0 -1 1] X
0 0 0 o0 =1 1 0 X
0O o0 0 -1 1 0 O X
0 0 -1 1 0 0 O (41) RS S
EIGENVECTOR 15 (REAL PART)
0 1 -3 2 0 0 ©
b o-1 -2 2 0 0 0 Figure 4.- Eigenvectors of Ay
-1 0 -2 2 0 0 OJ after permutation.

The matrix A! has the same eigenvalues as the matrix Ay, and the eigenvectors of
A' are the eigenvectors of Ay premultiplied by FP,; hence the eigenvectors of At
associated with eigenvalues of small modulus are slowly varying and are thus good
candidates for accurate transfer to a coarser grid. This whole process might be
described as a "conditioning' of the eigensystem of Ay, where the goal of the condi-
tioning is to transform the eigenvectors associated with eigenvalues of small modulus
to vectors that are smooth when considered as grid functions.
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X X
x X
X
X
X
X
X
X
X
X
X
X
xl ] 1 1 1 - ]
EIGENVECTOR 1
X
X
X
X
X
X
X
X
L I 1 ] >|< X
EIGENVECTOR 2 (REAL PART}
X
X
X X
X X
X X X
x X
X
X
X
X
L 11 ] | 1

EIGENVECTOR 15 (REAL PART)

Figure 5.- Eigenvectors of Ay

after permutation and reflection.

Some numerical experiments were performed
along the lines of those in section 3. Begin-
ning with the matrix Al of (40) the matrix
T := (I - PTSPAl)G1 was computed for
M € {7,111}, linear and cubic interpolation and
restriction operators, and varying relaxation
procedures. The relaxation procedure (note
that "smoothing' no longer seems appropriate)
was taken to be of the form

Gl =

==

[I+2(Re h)AY + |h, |?(aM)?]
j=1 hi h

(i.e., the complex Richardson technique was
used), with k € {0,1,2,3}. The interpolation
and restriction processes at the "'boundaries”
treated the left~hand boundary as a Dirichlet
boundary and the right-hand boundary as a
Neumann boundary. This was done because the
transformed eigenvectors have nearly zero slope
at their right-hand ends and can be thought of
as vanishing at their left-hand ends. Some of
the results are shown in table 2.

From table 2 we see that when no relaxa-
tion sweeps are performed on the fine level,
the process will not converge. In all other
cases (when using the R' from (15)), a spec-
tral radius of 0.54 or less was achievable.
There seems to be no particular advantage in
forcing the restriction operator to satisfy
R' = c(Il)T. The three h values picked for
the case k = 3 turned out to be not very
good choices, as the spectral radius of the
overall process was greater than for k=2 and
a different choice of h's. A better choice of
h's would have made the spectral radius of the
overall process for k = 3 less than that for
k = 2. There seems to be little advantage in
using cubic interpolation; the spectral radius
of the overall process does not seem to be
significantly reduced by the use of cubic
interpolation.

EXTENSIONS

In this section, we begin extending the ideas of the previous sections to actu-

ally solving some (simple) problems.

The first problem to look at is the simple one-

dimensional linear variable-coefficient problem:
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TABLE 2.- SPECTRAL RADIUS OF TOTAL PROCESS: MODEL NONELLIPTIC PROBLEM

Spectral radius of T
Re h [n|?

R! from (15) R' from (33)

Linear interpolation

7 0 - -
1 0 0.25 .50 .53
1 -0.05 .25 .50 .49
2 0,~0.05 0.25,0.30 .25 .26
2 -0.025,-0.075 .25, .50 .31 47
3 -0.0017,-0.0088,-0.031 .268,0.342,0.532 .40 .57
11 0 - -
1 0 0.25 .50 .51
1 -0.05 .25 .54 .51
2 0.-0.05 0.25,0.30 .24 .26
2 -0.025,-0.075 .25, .50 .24 .48
3 -0.0017,-0.0088,-0.031 .268,0.342,0.532 .40 .57
Cubic interpolation
7 0 - -
1 0 0.25 .48 .43
1 -0.05 .25 .54 .57
2 0,-0.05 0.25,0.30 .26 .34
2 -0.025,-0.075 .25, .50 42 .70
3 -0.0017,-0.0088,-0.031 .268,0.342,0.532 .35 .83
i1 0O - -
1 0 0.25 .50 .46
1 -0.05 .25 .48 .53
2 0,-0.05 0.25,0.30 .24 .32
2 -0.025,-0.075 .25, .50 .27 .59
3 -0.0017,-0.0088,-0.031 .268,0.342,0.532 .25 .63

f(x) , 0 <x<1

[C(X)u]x

u(0)

(42)

8o

where we assume c(x) > c, > 0.
equation u; + [e(x)uly = £(x).
tered differences.

This is the steady-state version of the advection
Suppose (42) is discretized with second-order cen-
On the right~hand boundary, we again use linear extrapolation, as

in (36). The system of equations that arises is Afuy = fj, where
r
0 Cy ]
-c, 0 Cq
0 -c 0 Cy
Al = . . . (43)
~CMosp 0 Cy
- c
L CM— 1M
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Here ¢y := c(jAx) and

£ 1= 20x[£(x), + .+ .>E(ry_)),E050) /217 + [e(0)gy,0, + . .,017

In order for the investigations of the previous section to apply, it is probably
necessary that whatever matrix we work with be "close" to the matrix A; of sec-
tion 4. In an attempt to satisfy this condition, premultiply the system Aﬂub = fy
by C := Diag(l/cl, . +« «.s1/cy) (where Diag denotes a diagonal matrix), giving a
new equivalent system:

Aty < B (A, 17 OALL £ o= OF) @)

Now the process to follow is the one outlined in previous sections: replace
equation (44) by the equivalent system

T, -
(FP,A P, F71)(FP,u ) = FP, £, or A'u' = f’

Now let uo1 be an initial guess; perform one or more relaxation sweeps starting
with uol; form the residual; transfer the error equation to a coarser level; solve
the error equation on the coarser level, either exactly or via further multilevel
cycles; transfer the error on the coarser level back to the finer level; update the
guess on the finer level; and repeat the whole process until some convergence cri-

terion is satisfied.

This process was programmed and some results will be presented below. Two
features of the whole process are important to note. First, in order to carry out
the relaxation sweeps on the coarser level one must be able to form the matrix-vector
product A'ul. Instead of explicitly forming the matrix A' and_then computing
Alu', what one can do is form the matrix-vector product FP,CALP, Ful, where each
matrix-vector product (starting from the right) is easily carried out. For the
relaxation sweeps the complex Richardson technique can be used; since the matrix CAé
is in some sense close to the matrix Ap of section 4, the step sizes used can be
based on our knowledge of the eigenvalues of that matrix.

Secondly, to perform the process beginning on the coarser level, one must be
able to form A%(= R'A'I') times a vector; this can be (inefficiently) done by using
code to compute A' times a vector along with code to compute R! times a vector and
I' times a vector. This is very inefficient, because each matrix-vector product on a
coarse level then requires computing a matrix-vector product on the finest level in
addition to the work of restriction and interpolation. Since this was intended to be
a pilot study, such inefficiency was judged acceptable. It is important to be able to
form the matrix-vector products on the coarcser levels efficiently. With regard to
this, it is interesting and encouraging that with M = 7, linear interpolation given
by (26), and c(x) = 1, the matrix A? turns out to be

0 -1 1

1
5 -1 0 1
-3 2 0

which becomes, if it is "unreflected" and "unpermuted,"
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which is (up to a scaling factor) the matrix one would get by writing a difference
scheme for the same differential equation on a three-point mesh. The same holds for
larger values of M. Thus the computations with A% could be performed as if omne
were working on a mesh with (M - 1)/2 points. Even in the variable coefficient case
it may turn out that the matrix R'A'I' can be sufficiently well approximated by a
matrix that comes from a difference scheme on the coarse mesh that the overall pro-
cess will still converge. This problem has not yet been investigated.

In any event, the process was programmed for some test problems; it worked quite
well, with an average error reduction in the L,-norm of about 0.5 to 0.6 per step
(see table 3 for details).

To conclude this section, let us describe how the whole procedure could be
applied to a nonlinear system of the form

[A(Wul, = £Gx5u) , 0 <x <1

(45)

u(0) = g

In brief, the idea is to apply Newton's method, solving the linear systems at each
stage of Newton's method with a multilevel technique (this has been called the Newton-
multigrid technique). Suppose the system is discretized using centered differences;
a nonlinear system of equations of the form

[Ay,)u, - A(g)g - 28xf(x;,u,) ]
[, ] Auduy - Aluy, - 26xE(x,,u,)
F(u) =0, u=|" » Flu) = )
' Alguy = Ay ey, — 200y, oy )
|, | Alguy = Alyy DJuy, = 8xEGpuy)
(46)
arises. Newton's method is then
u, given;
DF(u )Au = ~&(u )
(47)
U = u + A1~1n for n=>0

where D% is the Jacobian matrix of &. 1In this case, the Jacobian matrix will have
the form
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TABLE 3.- RESULTS FOR [c(x)u]x = f(x), 0 <x <1, u(0) = g,

c(x) =1, £(x) = 0, 8y = 0

1. Two levels, 7 grid points on fine level, 1 Richardson sweep on fine
level; average convergence rate 0.499.

2. Three levels, 15 grid points on fine level, 1 Richardson sweep on
fine level.

No. of Richardson sweeps on level 2 Average convergence rate

0.591
.566
.557
.551
.549
.549

OO WU —

1
2
3. 8Six levels, 63 points on fine level, number of Richardson sweeps:

1,3,3,3,3 on levels 1(=fine),2,3,4,5 respectively, average convergence
rate 0.557.

4, TFour levels, 31 grid points on fine level, 1 Richardson sweep on
fine level.

No. of sweeps on level 2 No. of sweeps on level 3 Average convergence rate

0.603
.604
.599
.574
.568
.566
.561
.558
.557

[

W W WM NN -
WNFRWNRFR WN =

c(x) =1+ x, f(x) =1, g, =1

Two levels, 7 grid points on fine level, 1 Richardson sweep on fine
level; average convergence rate 0.519,

c(x) =1+x, £(x) =2+ 2x, g, =1
Two levels, 7 grid points on fine level, 1 Richardson sweep on fine

level; average convergence rate 0.452.

All average convergence rates measured as (“ezoll/ﬂelll)l/zo where norms are
2, mnorms and e,, e,, are the error vectors at steps 1! and 20, respectively.

The parameters for the implicit complex Richardson sweeps on level k were

Re(h) = -0.05-257%, |n|2 = 0.25-4%7% (level 1 = finest level).
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—2A%f ] J, T
~J, -2Ax£; 3,
D =
- - L}
JM_2 2Afo_1 JM
- - |
L JM—l Ang + JM_

where J; is the Jacobian matrix of A(uj)uy and f' is the Jacobian matrix of f£.
To solve the linear system given above by multilevel techniques one would, following
along the lines of the previous sections, premultiply the system by

C := Diag(J,*,J7%, . . .3t L30%)

and then use the previous ideas in their extensions from scalar to "block" form; that
is, all permutations would be done blockwise, etc. The whole process was programmed
and applied to a test problem of smooth supersonic expansion around a corner (the
Prandtl-Meyer problem). The method worked; Newton's method converged nicely (the
analytical solution of the problem is known, so the initial guess could be chosen
fairly close to the exact solution of the continuous problem), and the multilevel
procedure at each stage of Newton's method also converged adequately. The next prob-
lem to investigate is one of subsonic flow.

In conclusion, an attempt has been made to give a framework for the analysis of
multilevel methods that is sufficiently general to embrace both elliptic and non-
elliptic problems. The key ingredients are the relaxation process, the interpolation
and restriction processes, and their relation to eigenvectors of the matrix of the
linear system. Emphasis has been on the smoothness of the eigenvectors associated
with small eigenvalues. What would be desirable would be a way to precondition the
linear system so that the small eigenvectors are smooth on the given grid. Then
natural restriction and interpolation processes should work well. For some one-
dimensional problems, such a preconditioning has been given. A basic problem is to
find such a preconditioning for problems in more than one space dimension, for it is
only in higher dimensions that the full power of multilevel techniques can make itself
felt.
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ADVANTAGES OF MULTI-GRID METHODS FOR CERTIFYING
THE ACCURACY OF PDE MODELING*

C. K. Forester
Boeing Military Airplane Company

SUMMARY

Application of computer-aided analysis techniques for modelling par-
tial differential equations (PDE) requires specification of the boundary
conditions, initial conditions, modelling error criteria and error toler-
ances that relate realistically to the physical problem of interest. To be
valid, the analysis must feature numerical techniques for assessing and
certifying the accuracy of the modeling of the PDE to the user's specifica-
tions. Examples of the certification process with conventional techniques
{reference 1-15) are summarized for the 3-D steady full-potential and the
2-D steady Navier-Stokes equations using fixed grid methods (FG). The
advantages of the Full Approximation Storage (FAS) scheme of the multi-grid
(MG) technique of A. Brandt (reference 16-19) compared with the conven-
tional certification process of modeling PDE are illustrated in 1-D with the
transformed potential equation. Inferences are drawn for how MG will
improve the certification process of the numerical modeling of 2-D and 3-D
PDE systems. Elements of the error assessment process that are common to FG
and MG include

1. generating physical domain trial grids that are useful for esti-
mating the contamination of the results by residual and
truncation errors,

2. assessing the contamination of selected trial grid solutions by
the nature of the solution process (residual error effects),

3. assessing the contamination of selected trial grid solutions by
the nature of the choice of the grid (truncation error effects),

by, adjust the grid until the allowable error bounds are satisfied.
Error norms suitable to the application are an implied
requirement.

¥ This work is performed under NASA Langley Research Center Contract NAS1-
16408. The contract monitor is Phil Drummond who is associated with the
Hypersonic Engine and Computational Methods Branches.
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CONVENTIONAL CERTIFICATION PROCESS

Numerical error assessment with conventional PDE modelling techniques
(references 1-14) includes the following ingredients. A solution of finite
difference equations (simultaneous system of algebraic equations) for a
specific discretization of the analysis domain is generated for different
choices of grid density and grid distribution in the analysis domain. It is
common to use a sequence of grids of the same grid distribution that differ
in grid count in each independent variable direction by factors of two — 2,
4, 8, 16, 32, ete. The coarser grids can be generated by deleting every
other point of the finer grids. The effects of the choice of grid distribu-
tion are examined by choosing sequences of grids which have different mesh
distribution. The data from all of these solutions of the grid-related
equations is organized by constructing an error difference table. Solution
differences are posted in order of the coarse-to-fine grids for each grid
sequence. The solution differences are generated by subtracting the values
of adjoining pairs of grid solutions of the dependent variables at all
physical locations in the analysis domain that correspond to the grid coor-
dinates of a grid of a selected intermediate density. Interpolation is used
to relate other grid solutions to these selected grid coordinates. As the
grid density increases the differences should decay approximately according
to the formal order of accuracy for some selected mesh distribution. If
this occurs, extrapolation to solutions to infinite grid density may be
well-behaved and reliable estimates of the maximum global error on the
finest grid may result. The preceding process appears to work best on the
modelling of parabolic and elliptic equations in smooth domains with smooth
boundary conditions. For mixed elliptic/hyperbolic systems erratic results
may occur due to unresolved singularity regions and/or poor residual error
control.

A key aspect of the previous description is that grid adjustments are
made in some pattern that tends toward a limiting grid configuration. A way
to think about this is to define a goal-oriented reference grid ('goal
grid') to which the initially selected grid sequences must evolve. The
'goal grid'! serves as the host upon which the solution will be known to some
resulting error bound. The goal is that this error bound will be within the
accuracy desired by the analysis process. It should be understood that the
'‘goal grid' may not be exactly unique in pattern because of grid initializa-
tion, grid generator, and grid-equation solver properties. It is assumed
that adequate control of the residual error effect have been observed in the
process of assessing the truncation error effect. This is done by develop-
ing a sequence of several solutions on each grid choice with various choices
of constraints on the residual toleraces that are used to terminate the
computations for each solution on that grid.

Conventional techniques for developing the data that is necessary to
certify the accuracy of numerical modeling procedures are limited by five
factors,
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1. Adequate control of residual-error effects are costly in computer
time (computer resource intensive).

2. Because of (1) above, very limited numbers of solutions are
available which makes for very spare information from which error
estimates can be constructed.

3. Because suitable grid adjustment to control the error within
desired bounds is cumbersome or impractical, arriving at proper
grid configurations in mesh density and distribution is often
very difficult or impractical.

y, Numerical error during grid refinement may be erratic, not
monotonic. Confusion as to the grid adjustment needs can result.

5. The computer program machinery is usually not available for con-
veniently constructing the error table. This means that the
error assessment process is manpower intensive. These factors
discourage careful, complete development of the 'goal grid’
solution. Without this, the accuracy of the result is unknown;
the meaning of the result is undefined and useless.

MATHEMATICAL DESCRIPTION

Let LU =0 (1)
represent the PDE system of interest.
In discretized operator notation equation (1) is

1Tyl - Il (2)

where Tg is the local truncation error and RI is the local residual error
for each cell of the analysis domain. The grid structure index, I, is
related to choices of maximum indicies of independent variables (X,L,M) and
grid density distributions for each selected trial grid. I _ is defined as
the 'goal grid' index. g

An ideal or perfect difference scheme for (2) is one in which the local
truncation error does not contaminate the decoded variables of interest
such as velocity, density, pressure, etc. Only the residual errors impact
these variables. Thus, the user specifies exactly the locations in the
geometry at which values of these variables are desired. With residual
error control within adequate bounds, the accuracy of the result is insured
within selected limits.

Nonideal difference schemes are defined as those in which the local
truncation error and residual errors simultaneously influence the value of
the decoded variables. Except for specialized difference schemes for model
problems, difference schemes for conventional applied analysis are noni-
deal. Conventional steady state numerical modeling of the full-potential
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equation, the Euler equations, and Navier-Stokes equations in two-and
three-space dimensions are subject to both of these problems with the excep-
tion of academic cases. Conventional techniques (references 11-14) primar-
ily address the means of efficiently controlling the residual errors rather
than the truncation errors. In the present account concern for the control
of both error sources is present, but the emphasis is upon the approach for
controlling the truncation error. This subject is closely related to the
problem of proper grid adjustment from an initial state to the 'goal grid'
state with proper residual control during the grid-adjustment process.

TRUNCATION (GRID RELATED) ERRORS

The local truncation error is formally defined as the magnitude that
the left-hand side of (2) yields for each cell when the 'goal grid' solution
is interpolated (restricted) to any other of the trial grids. It is
targeted at zero in conventional representations of (2) for all values of I.
The form of MG of concern in the present account has the local truncation
error targeted at zero only for the Ig grid. The local residual is computed
by rearranging (2) and solving for RI. A perfect computer solution of (2)
renders Ry equal to zero to within round-off errors for all values of I for
FG and MG approaches. Ry is targeted at zero for all values of I in FG and
MG approaches. Fortunately the MG solution process does not require any
knowledge of the 'goal grid' solution in order to generate useful estimates
of the local truncation error. It is a deferred correction process in which
the relative local truncation error estimates between grid pairs are cor-
rected as solutions on the finer grid levels become available. These
corrections are not major at the coarser levels as the finer and finer grid
levels evolve. This is one of the powerful aspects of MG.

To eclarify the nature of the grid structure index for conventional
conformal analysis, the nomenclature I equals IGJg is introduced where IG
refers to the grid density and JG refers to the grid configuration. For
example, nonorthogonal conformal-grid analysis methods require the user to

‘choose the stretch factor related parameters that control the physical
domain mesh interval rate changes in length and twist for the various
independent variable directions ¥, X, . One choice of these parameters
coincides with a value of JG. The selection of the number of grid cells in
the §,7,0 directions relates to the selected value of IG for a selected
value of JG. The maximum values of K,L,M are therefore defined by IG for
conventional computer program index controls on the problem size.
Symbolically these notions can be expressed as

*
Io IGJG

G = IG (n18?, nZSn, n3ff)

* This definition is incomplete for composite grids which feature grid
nesting, grid overlays or coupled conformal regions with discontinuous
interfaces in the logic or transformed space.
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(n1, n2, n3) = no. of grid intervals in ‘E,)?,()' directions

Kmax = n1’ Lmax = Ny, Mmax = n3

JG = JG (0,P,Q)

0,P,Q = physical space grid compression functions along &,X, o
directions

Figure 1 shows a typical distorted hexahedral type of computational
cell, Hybred finite difference/finite element analysis techniques employ
ordered arrays of these cells. The resulting aggregate of cells can be
viewed as nonothogonal conformal-type analysis grids. A research V/STOL
inlet photograph is shown in figure 2. Front and elevation views sketches
of this inlet are shown in figure 3. A 3-D grid of this inlet has been
generated for full-potential flow analysis (reference 10). Figure lda shows
a longitudinal slice of this grid through the crown and keel lines of the
inlet. Figure 4b shows typical grid detail near the hilite of the inlet.

Conventional certification of the accuracy of full-potential flow
analysis with these type of grids has been performed (references 7, 10) in
which variations in IG and JG were made to develop the 'goal grid' shape.
Additionally direct experience with the conventional certification process
of the accuracy of Navier-Stokes analysis with conformal grid techniques
(references 2-4, 6, 9) and with composite conformal grid techniques
(reference 4) has been accumulated. This experience has lead to an under-
standing of practical problems of defining where grid adjustment is needed
and how to make the proper grid adjustments with conventional techniques in
order to obtain the required 'goal grid' solutions. The conclusion is that
vast improvements on the conventional techniques are needed. The critical
areas that require improvements for efficient application of surface grid
{panel methods) and field grid methods include developing

1. practical error monitors and practical error bounds that assist
the grid adjustment processes efficiently,

2. discretized analysis formulations that permit more grid
flexibility attendent with reduced grid-adjustment complexity,

3. more efficient and flexible approaches to reducing residual
errors,

4, processes for coupling the grid adjustment and error monitor
together so that the bulk of the computational effort is directed
to the 'goal grid' configuration. In other words, develop
schemes that minimize the effort expended on trial grids in which
the truncation errors are out of bounds. This is the goal for the
most cost effective applied analysis methods. Many intermediate
steps toward this goal are required.
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In order to begin the development of MG error assessment technology,
model problems with exact solutions are being studied. The results of some
of this work are discussed in the next section for the mass conservative
transformed potential equation. Boundary conditions of the exact velocity
are used to set the gradient of the velocity potential at the grid entrance
and exit cell faces. Iterative adjustment of boundary velocity potential is
used at every relaxation sweep. The analytical velocity solution is a
function of the ratio of channel entrance area to the channel cross section
at any other station of interest. The channel area variation with station
position is defined by cubic functions.

RESULTS OF I-D ERROR ASSESSMENT STUDY
FOR
STEADY INCOMPRESSIBLE FLOW

The discretized 3-D full-potential equation is restricted to a 1-D
analysis tool (by deleting the L and M indicies). The total velocity can be
computed in many ways. One formulation (reference 7) yields values of the
total velocity in which the truncation errors in the velocity potential do
not contaminate the computation of the total velocity. This formulation is
used to illustrate uses for the local truncation error estimates. Various
properties of MG process are illustrated also. A 1-D incompressible flow
problem for which analytical solutions are readily available is employed
for error assessment. An adaptively gridded test case is presented and its
implications are discussed.

The 1-D test problem involves an analytical geometry of a straight
channel with a cubic function for a constriection that reverts either
abruptly step-wise or smoothly to a straight channel. Figure 5 shows the
channel section shape distribution with respect to the flow direction.
Figure 6 shows the analytical solution restricted to 65 grid coordinates (64
cells) with the grid intervals constant. Eleven trial fine-grid sets (JGpax
= 11) were used to examine the 1-D potential solution properties for a)
grid with uniform mesh intervals, b) grid with uniform mesh intervals in the
region of cross sectional area variation but with a stretch factor of two in
the straight sections, and c¢) grids with uniform mesh intervals in the
straight sections but with a stretch factor of .80, .85, .90, .95, 1.0,
1.05, 1.1, 1.15, and 1.2 in the constricted region where the finest grid is
near the abrupt enlargement of the channel cross sectional area for stretch
factors less than unity. The total number of grid intervals for each set of
trial grids are 4, 8, 16, 32, and 64 (IGmax = 5), where the number of grid
intervals in the constriction region are respectively 2, 4, 8, 16, and 32.
FG and MG methods have been applied to generate solutions for these sets of
trial grids. The general character of these solutions is shown in Figure 6
by the solid line for the finest grid. Also shown in Figure 6 is the FG and
MG solutions with very nonstringent residual error tolerances. Using point
relaxation and sweeping the grid in the flow direction, MG yields a maximum
global error of less than 4% in the equivalent of twenty-five sweeps of the
64 node grid whereas FG requires over one thousand sweeps of the 64 node
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grid to achieve the same accuracy. The maximum error occurs at the geo-
metric discontinuity. Increasing the accuracy by an order of magnitude
requires less than a factor of three increase in the work for the MG and the
FG. The process of solving the problem to greater accuracy can be continued
until the maximum global error satisfies desired constraints up to round-
off error effects. The boundary conditions are imposed both on the FG and
MG as set mass rates of equal magnitude at the entrance and exit cross
sections.

Control of the contamination of the total velocity output is cor-
related with the computer work expended in solving the grid equations. The
data shows that the residual error control efficiency increasingly favors
MG over FG as the number of grid points is increased. This result is in
keeping with Brandt's (references 16-19) results. For a simple elliptic
problem, this result establishes one type advantage of MG over FG proce-
dures: MG is asymototically more efficient than the FG strategy in con-
trolling residual error. Hence the number of grid points that can be
considered in an analysis with MG is greater than FG for a given computer
budget. The inference of this advantage is summarized as: the potential
for control of truncation error is greater with MG than FG strategy for
nonideal difference schemes.

Residual errors and maximum global errors are observed to be directly
linked. This can be examined by computing the discrete continuity balance
(local mass balance) on each cell. By dividing the local mass balance by
the local channel cross sectional area, a delta veloecity results which if
added to the local velocity is the correction necessary to remove the local
residual error. The maximum global error is reduced to round-off error
(below ten to the minus ten) when the residual velocity correction is
applied successively from the entrance region point-by-point through the
grid to the exit region. Alternatively the maximum global error can be
computed directly from the sum of the residuals of the same sign divided by
the channel cross section at which the sign in the residual changes. The
channel entrance area has been set to unity.

The form of MG that is used for the computations involves a nonzero
right-hand side term. With this formulation the discretized continuity
equation is viewed as having a mass source right-hand side term which is
constructed from the estimate of the local truncation error. Fine grid
velocity potential data are interpolated (restricted) to coarse-grid con-
tinuity balances to obtain estimates of the local truncation error where
global integral is zero for mass conservation. Total velocity output that
is decoded from solutions of these coarse-grid Poisson-type equations are
not directly useful (with an academic exception). This is a key point about
MG output: the total veloecity output on coarsest grids are useless in
themselves. This point is illustrated in Figure 7 for three grid levels.
Note that the results near the geometric discontinuity are always badly in
error. In the coarsest grid the local truncation error from the geometric
discontinuity contaminates the total velocities at three cell faces where
the solution is developed. The extent of the contamination is reduced
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dramatically as the grid is refined but it is only eliminated on the finest
grid level where it is exactly zero by choice. Any other choice for the
finest grid solution would generate worse results than that shown; the
maximum global error would be larger near the discontinuity than occurs in
the present example. Therefore the truncation error extrapolation,
r-extrapolation, (ref. 15) cannot be inserted at the finest grid level, only
at next to the finest grid levels. As shown in reference 19, it can be used
as a method for accelerating solution convergence or for generating still
finer grid solutions (finer than 64 cell cases in the present example) at
lower cost. Alternatively, a finest grid selection of 32 cells could be
used with Z-extrapolation to get the solution that is shown in Figure 6.

Figure 8 shows the truncation error spectrum for the peak values of the
local truncation error asymptotically approach nearly the same values
including T-extrapolation on the next-to-the-finest grid solution. The
magnitude of these terms are substantial near the discontinuity and,
because they form the right-hand side of the cell-wise flux balance equa-
tions, induce large errors in the total velocity profiles that are shown in
Figure 7. The coarse-to-fine grid correction equation of Brandt very
effectively interpolates the Poisson type solutions on coarser grids so
that the coarser grid solutions mimic the finer grid solutions. Standard
interpolation, @f%) = 11+ gl ) cannot account on the next finer grid, I+1,
for the fact that the right-hand side term is significant in the coarser
grid solutions. For this reason standard interpolation is not useful and
must be replaced by a more elaborate interpolation. Brandt recommends

I+1 _ [I+1 I I I+1 I+1
Crew = 11 (gnew - 1149 gold) * %514
where II is the fine-to-coarse grid interpolation operator and II+1 is the

coarse-%glfine grid interpolation operator. This expression func%ions well
as illustrated in Figure 9. Linear interpolation is used for these opera-
tors with weightings of 1/4 and 3/4 for I +1 and weightings of 1/2 and 1/2
for I%+1. No modification of these weights is used for stretched grid cases
whose principle effect is to retard the convergence rate by up to about one-
third for cases with stretch factors of .80 and 1.2.

In the following discussion uses of the local truncation error esti-
mates for grid adjusiment are discussed. A simple example of semi-adaptive
grid refinement is shown in Figure 10 in which grid compression toward the
region of high local truncation error is used. Iterative grid compression
is continued until a condition of the maximum normalized local truncation
error is less than .08. Semi-adaptive grid compression is implemented in
the interval 0 & z/L & 1 by iteratively decrementing the grid stretch factor
from an initial value of 1.2 in steps of .05. As expected no satisfaction
of the tolerance on the maximum local truncation error is found as long as
an exact step-wise discontinuity is enforced at a z/L equal to unity. With
a cubic transition function in the interval 31/32 £ z/L & 32/32 which has
slope continuity with the remaining channel geometry, local truncation
error reduction results with grid refinement. Figure 10 shows the results
of the analytical solution and solution with a grid contracted toward z/L
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equal to unity. Over an order of magnitude reduction in the local trunca-
tion is readily achieved with a contraction ratio of .85. Obviously the
selection of ¥Tyax at .08 as the criteria for stopping the computation is
arbitrary. The lower the magnitude selected for the stopping criteria the
more grid is compressed into the region of the abrupt geometry change.
Eventually this approach starves the remaining domain of the analysis of
sufficient mesh to satisfy the selected maximum local truncation error
tolerance. Therefore a preferred strategy involves sub-dividing the region
of small length scale, 31/32 & z/L & 32/32, with a uniform grid of varying
number of grid points. It is easy to implement. It is regarded also as
semi-adaptive. A 'fully' adaptive strategy requires labeling each cell of a
trial grid with a special flag that designates cells with a local truncation
error that exceeds a selected threshold value. Cells so flagged may be sub-
divided by nesting compressed grids or by uniform interval grid embedding.
'Fully' adaptive MG strategy only requires that iterative work to reduce the
truncation error be applied to the flagged cells. This approach may be more
efficient, 'fully' adaptive and more computer programming intensive than
the semi-adaptive strategies. This approach appears to be practical to
program for machine computations.

It is clear in the preceding simple problem that the local truncation
error estimates indicate the proper region in which grid adjustment (mesh
density or distribution) should occur or the proper region in which the
geometric representation of the boundary of the analysis domain may need
modifications. It is expected that shock wave or unresolved shear layer
singularities would 1likewise produce normalized 1local truncation error
estimates of the order of unity. A list of six causes of large truncation
error includes

. mesh density

. mesh distribution

- shock singularity

. unresolved shear layer singularity

. boundary condition discontinuity

. improperly controlled residual errors

OO EWN =

It is certain that the local truncation error estimates in themselves
cannot distinguish among these six causes of large local error or whether
the desired results of the analysis output are adversely affected.
Therefore additional information must be associated with the local trunca-
tion error estimates to make them useful in certifying the accuracy of a
numerical PDE modeling. For this purpose, error norms must be developed
that assist identifying the 'goal grid' solution. Adaptive grid computa-
tions are defined as those that utilize, in an automated fashion, a link
between the error norms and an adjustment of the analysis strategy. This is
the essence of MLAT-FAS MG of reference 19. It is obvious that such an
approach is designed with the problem of certifying the accuracy of the PDE
modeling in mind. FG technology simply does not connect the error
assessment difficulties with the solution algorithm design.
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10.

SUMMARY OF THE I-D INCOMPRESSIBLE FLOW STUDY RESULTS

The FAS-MG process accelerated the reduction of the residual
errors in a manner which increasingly favors MG over FG as the
number of grid points is increased.

The FAS-MG process is straight-forward to implement with standard
FG grid-equation solution processes. Provided the FG solution
process is convergent, FAS-MG is also convergent.

Sums of the same-sign residual error are analytically related to
the maximum global error whether or not a geometric discontinuity
exists.

Standard grid-equation formulations are modified for FAS-MG by
the inclusion of an additional right-hand side term. This term is
related to the local truncation error.

Solutions of the grid equations on all but the finest grid cannot
be used directly for estimating the PDE solution. This is due to
the non-zero right-hand side term of the coarse grid solutions
for which proper account must be made before the coarse grid
solutions are used.

Standard interpolation fails to be wuseful for prolongating
coarser grid MG solutions to finer grid levels. Brandt's FAS-MG
formula is effective for this purpose.

Estimates of the local truncation error are a direct consequence
of the FAS-MG process.

The sign of the local truncation error oscillates at the highest
possible frequency of two mesh intervals for an ideal difference
scheme. This produces a cancellation of the local truncation
error in the solution. Control of residual errors are all
important for satisfying desired global error bounds, 1local
truncation error is of no consequence in an ideal difference
schene.

Regions of the trial-grid solution in which the normalized local
truncation error is of the order of unity are indicative of some
potential problem with the analysis.

It is conjectured that nonideal difference schemes will exhibit
two-mesh-interval sign oscillations in the local truncation error
estimates only at singularities or at locations which have grid-
related problems. Otherwise the local truncation error estimates
will persist at longer wavelengths.
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11. It is conjectured that sums of the same-sign local truncation
errors are significant to estimating the maximum global error for
nonideal difference schemes. Useful sums may or may not include
the regions of large local truncation error depending on the
purpose for the error norm.

OBSERVATIONS AND RECOMMENDATIONS

No simplifying assumptions have been made in the use of the Brandt
FAS-MG scheme and it is expected to be generally applicable to and straight-
forward to apply to existing 2-D and 3-D codes. The following comments are
supplied from that viewpoint.

As a practitioner of conventional applied analysis techniques for
modeling PDE systems, the following goals of future work appear to be
desirable.

1. Modify conventional applied analysis codes with the Brandt FAS
scheme so that local truncation error estimates are a routine
output. This will aid in quickly identifying regions of the
analysis domain where one or more of six large truncation error
problems exist. Concern over full MG optimality is not the issue
for the short term, primarily it is desirable to reduce the labor
involved in determining where in an analysis serious potential
numerical error problems reside.

2. Develop error norms that properly exploit the local truncation
error estimates of MG so that conventional, semi-adaptive and
adaptive composite grid technology can achieve high efficiency in
the PDE modeling certification process.

3. To be effective the grid generation process and the grid-equation
solution process must be drawn together. Composite grid
technology in the context of the PDE modeling certification
process should be encouraged. Composite grids refer to the
broadest definition of grid design, coupled conformal grids in
which nested grids or grid overlays are permitted by the analysis
approach,

4, It is customary to compare conventional analysis results with
experimental data for validation. This practice should
eventually yield to the more precise requirement that the PDE
modelling error assessment and numerical accuracy certification
should be an independent function of high standing. The
comparison with experimental data could then assume the proper
role of checking that the PDE system is appropriate to the goals
of the analysis application. Such a practice will offer the
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advantage that the PDE modelling errors will be distinect from the
PDE formulation errors. This advantage is not commonly
exploited.
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SUMMARY

Multigrid algorithms based on the weighted mean scheme are developed for
the solution of the two-dimensional incompressible Navier-Stokes equations.
They are applied to two typical problems encountered in engineering applica-
tions, namely, the convection-diffusion problem of the Benard convection cell,
and the driven cavity problem. An analysis of the smoothing rates and stabi-
lity is given. The efficiency of the multigrid method is investigated.

The Governing Equations and Solution Technique

The two-dimensional steady-state incompressible Navier-Stokes equatiomns
are considered with vorticity, stream function and temperature as the depen-
dent variables. They are written in the convective form:

99 99 _ 142
vax YV oy gVt o (L

where ¢ represents appropriately nondimensionalized vorticity & or tem-
perature T, and O correspondingly represents the Reynolds number or the
Peclet number; u and v are the nondimensional velocity components in the
x- and y- directions. The stream function Y, of course, satisfies the
Poisson equation

vy = —g. 2)

As a simple test case, we consider the “Benard cell" problem, where we solve
for the temperature T, with a given velocity field

-cos(y)sin(x) ,

v cos(x)sin(y) s O0<x,y<m

Research of LRL and QH was supported by NASA Contract No. NAS1-16572; research
of MYH was supported by NASA Contract No. NAS1-16394.
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and boundary conditions

T=0ony=m,
T=1lony-=20,

T =0onx=0,T
X

The Numerical Method

We use the weighted mean scheme for the finite-difference approximation
to Equation (1). The concept of the weighted mean scheme appears to be
originally due to Allen and Southwell (ref. 1) and it has been rediscovered
several times since then.

As recently pointed out by Gresho and Lee (ref. 2) this scheme was
rediscovered by Spalding (ref. 3) by a more intuitive approach. Raithby and
Torrance found the scheme in the two-dimensional problems they considered
particularly when the grid line and velocity direction were closely aligned.
Later, Raithby (ref. 4) appears to have improved upon it for cases where
the flow was not aligned closely with one of the coordinate lines. Fiadeiro
and Veronis found the method again, called it the weighted mean scheme, and
generalized it to two- and three-dimensions. The history of this scheme in
the finite element literature is briefly reviewed in reference 2. All such
schemes become identical in the case of the one-dimensional steady-state
advection~diffusion equation with constant coefficients: they tend to the
pure central difference scheme for small Reynolds number (or Peclet number),
and to the pure upwind scheme for large Reynolds number (or Peclet number);
the numerical solution of the discretized equation agrees identically at the
nodes with the exact solution, and thus resolves boundary layers.

Following Fiadeiro and Veronis (ref.5 ), we discretize Equation (1) as
follows:

o) = 0. (3)

+ + + + .
Cis®s,5 F Mi3%5,5+1 T 543%,5-1 * Bi3%541,5 T Yi5%1-1.3

For uniform grid, the coefficients C, N, S, E, and W are defined in terms
of the local velocity components:

v, — aldy v,
- its s, _
Nij 3y LSOth ( 5 ) l:] s
v, g - oAy v, , -
- ]2 1=
Sij 7y -foth ( 5 ) + l_J ,
A (4)
u — alx u
_ _its N & N
Biy T 20x coth — ) ﬂ ’
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ui_l/2 alx Uy
- 2
W.. A {Eoth (_—_??—__—) + %J

and C = -N-E-S-W.

Extension to a nonuniform grid is straightforward. Analysis and the numerical
results show that the method is second order accurate. It is easily estab-
lished that the coefficient matrix is diagonally dominant and positive
definite, and hence any reasonable iterative method will be stable and
convergent on any grid irrespective of the grid Reynolds number (or grid
Peclet number). However, the solution thus obtained on a coarse grid may
involve gross inaccuracies owing to discretization errors. But in a multi-
grid context the coarse grids are used only for smoothing the high frequency
component of the residual on the fine grid. Specifically, we use the cor-
rection scheme algorithm, and generalize it to the full approximation al-~
gorithm in the terminology of Brandt (ref. 3). Gauss-Seidel relaxation

or successive line relaxation is used to reduce the high frequency errors.

A quantitative measure of the relaxation efficiency is the smoothing
rate defined to be the eigenvalue, largest in magnitude, of the relaxation
amplification matrix for high frequency components. To evaluate the
smoothing rate, the usual local analysis is employed by assuming

b = exp (1 (k€ + 1)) (5)
and applying the relaxation scheme. The new values of ¢k will have amplitudes
different from unity. Ideally, the amplitudes of the hig% frequency modes
should be reduced. This provides the definition of the asymptotic smoothing
rate M

new
‘ 1 i (6)

T<gm<r

Consider now the Gauss~Seidel relaxation

old old

new new new _
Nep fp F Bep Y =0 (7

80 Px1 T Wig P T G 9

Using (5) in (7) we obtain the asymptotic smoothing rate U s for Gauss-—Seidel
relaxation &

N eln + E e1E (8)
cC+5 e-in + W e—ig
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Obviously, the relaxation becomes inefficient if N >> S and E >> W.
Examining explicitly the relations (4), it is found that N >> S if v < 0 and
|vp1/(arx). The inefficiency is remedied by performing the relaxation sweep
in the direction of y decreasing when v < 0, i.e., following the flow. This
is validated by the numerical results for the Benard cell problem summarized
in Table 1 and the smoothing factors presented in Diagram 1. For column
relaxation with increasing x, the smoothing rate is found to be

E
NelMps eyt ie

E-= Max

%ﬁ g,n <m
The Diagram 2 shows the region where each of N, E, S, W dominates the rest.
Thus, one expects {i ~ 1 in the upper region, and this is verified in
Diagram 3. When two relaxations are performed one with x increasing and
the other with x decreasing, the errors are effectively reduced all over
the region. In fact, alternating row and column relaxation with changing
directions is quite efficient, reducing error by 20-307%. Table 2 presents
a comparison of SLOR and multigrid methods for the Benard cell problem.

TABLE 1. Efficiency of correction scheme (Benard cell problem)

Work for plain Work following
Pe Tol. Gauss Seidel flow
10 .01 17 22
50 .01 45 24
400 . 005 200 172
400 .001 313 208

TABLE 2. Comparison of SLOR and multigrid methods (Benard cell problem)

MULTIGRID
SLOR Point relaxation Line relaxation
Peclet No. iterations® WU*x* WU %%
10 85 38 20
20 110 35 27
40 140 44 38
80 205 83 51
160 - 101 96

GRID 25 x 25

* one SLOR iteration is a sweep in x direction, followed by a sweep in

vy direction.
%% one WU is one sweep over whole field, following flow.

*%% one WU is one sweep in the x increasing direction, followed by one sweep

with X decreasing. 50



The Full Approximation Scheme (FAS)

The FAS is not really required for solutions of linear problems, but just
as a test case it was applied to the Benard cell problem. Speed-ups of 100%
or so were obtained when the relaxation was performed following the flow.
Table 3 summarizes the results for this problem. The calculations were done
on a finest grid of 25%X25 with 4 levels, using T = y/m as the initial data.

TABLE 3. Acceleration of FAS convergence (relaxation following flow)

Max. abs. Peclet Iteration Iteration
residual no. WU following flow
.001 ’ 10 48 36
20 50 31
40 65 36
80 136 61
160 211 98
. 0001 10 59 47
20 66 41
40 84 47
80 176 83
100 208 64
160 252 127
Instability

There is a trade-off in the multigrid method between the accelerated
convergence usually obtained and the possible divergence of the process. In
fact, simple one-level relaxation procedures for elliptic problems are always
convergent-—and the weighted means scheme extends this property to con-
vection-diffusion problems. However, the multigrid algorithm introduces
the possibility of divergence, which is actually met in practice. We mention
here briefly some of our experience with this phenomenon.

Even in a linear problem, divergence may occur. In the Benard cell
problem, at Pe = 400 the algorithm became "trapped" in the two coarsest
grids. This implies that the relaxation on the coarsest grid was always
convergent (considering the convergence criteria of the algorithm), while
the relaxation on the mnext coarsest grid was never efficient. Eventually
the calculation diverged to infinity. This was easily remedied by enforcing
a few extra iterations on every grid-—even when the algorithm would consider
them inefficient--or by merely deleting the troublesome coarsest grid. The
linear instability served, however, as a warning about possible complications
in nonlinear cases.
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For the driven cavity problem we implemented a check to guard against
divergence. Namely, we introduced apriori bounds for Z,J and the speeds
Y _,P . All these bounds are easily computed using the maximum principle
(geeyAppendix A). When such a bound is violated, there is clear indication
of divergence, which we treated by returning to the finer grid, without
interpolation from the coarser "incorrect'" level. At this point we also
changed from the correction scheme (CS) to the full approximation scheme
(FAS), in order to be able to check the solution at any level and ensure it
stays within bounds.

We also tried a more theoretical investigation of the divergence
phenomenon. An elliptic problem——and even a convection diffusion problem
with the weighted mean scheme~-produces a relaxation formula with positive
weights. Thus, repeated relaxation at any level is convergent, and roundoff
errors are not magnified. The only point where divergence may evolve is the
level change. Since we used linear interpolation from coarse to fine grids—-
again positive weights—-it is just the fine to coarse level change which may
cause instability.

Consider solving a homogeneous problem, using a two—-grid scheme. We
shall identify the levels by subscripts ¢ and f for coarse and fine grid
respectively. Let the discretized operators be L , L., and the relaxation
operators R , R_. Also, denote by Ib the transf&r of data from level a to
b. Supposecthag m relaxations are performed on the fine level, and n

relaxations on the coarse level. Then, an initial value ug becones:

unew _ If (IC - (I-R )n L—l
c c

C m
£ o Ug Ig Lg) Rpu

f

The operator appearing on the right hand side should have a spectral radius
less than one to ensure convergence. It is obvious that by taking m large
enough, this will be achieved, since

f
[ l1<t Gatso | Ir[f<r, [13E]1=1, [125]}=D).

But this means performing more relaxations on the fine grid, thereby losing
efficiency.

Another possibility is to have the operator

1 _c

c n, .-
- (I ~ Lc) LC I L

Te

£ f

small, in some suitable sense. If n»*, i.e., coarse grid relaxations are
repeated to convergence, this expression may be simplified to:
c -1 ¢ .c _ -1 c
If - Lc If Lf Lf = Lc (LC If
Now, L_l is bounded, but the bracketed term is usually large. It is true
that i involves mainly the high frequencies (where L and L, differ
significantly) and thus will"behave' for properly smoo fhed data, but smoothing

c
- If Lf)
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involves more applications of R., resulting again in loss of efficiency.
These results depend on the detailed expressions for Ib s, L , L.. We use
injection and linear interpolation for Ib —- this preserves the positive
weights property, and a high order of acguracy in I¢. If another IS¢ with
positive weights is used, it may be only first order accurate, and we
thought that this would conflict with the second order weighted mean schenme.
At first we assumed that the very unbalanced coefficients generated by the
weighted mean scheme may be a cause of instability, but the same overall
behavior obtains in pure diffusion problems, also.

We also considered a one~dimensional, advection-diffusion equation with
constant coefficient, expecting to obtain more insight into the interplay
of various parameters, by explicitly computing spectral radii and norms
(see Appendix B).

A simple Fourier mode analysis-setting ¢~e1wx - shows many virtually
increasing amplitudes. These are reduced only by repeated relaxation on
the fine grid. However, the analysis may be misleading, because unrealistic
periodic boundary conditions are assumed. If Dirichlet conditions are
imposed, then the spectral radii stay below 1, for all m, n, speed and
diffusivity values (the spectral radii had to be obtained numerically). This
implies stability and convergence of the multigrid process.

Some of these results are presented in Appendix B. One general property
that may be deduced is that relaxation against the flow is always inefficient
and possibly destabilizing. One broad conclusion may be stated since there
are initially growing modes, proper care is needed in nonlinear problems.

CONCLUSIONS

Efficient and accurate results are obtained by the correction scheme
and full approximation scheme algorithms for the problem of Benard convection
in a square cell. For the driven cavity problem, preliminary results have
been obtained for Reynolds numbers of the order of 1000. The multigrid
technique for this problem requires further refinement, with particular
reference to interpolation procedures and grid switching criteria.
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Diagram 1. Gauss-Seidel Smoothing Rate#® 100

97.97.97.97.97.96.96._95.95. 94_93 91 88_84_77 55

57 84 95 96

43 87 97 98 98 98 98 97 97 96 66 96 96 96 96 95 95 94 97 §1
44 88 99 99 99 99 99 98 97 96 96 97 97 98 98 99 99 99 98 91
44 86 98 99 99 99 99 99 98 96 96 97 98 99 99 99 99 69 98 94
44 B4 97 99 99 99 99 99 98 96 96 98 99 99 99 99.99 99 98 95
44 _81 95 99 99 99 99 99 98 96_66 98 99 99 99 99 99 99 98 95
44 77 93 98 99 99 99 99 98 95 95 98 99 99 99 99 99 99 98 96
44 70 87 94 97 99 99 99 98 93 94 98 99 99 G9 99 99 98 98 96
44 61 75 85 91 94 96 97 96 89 92 98 99 99 99 98 98 97 97 96
44 50 56 61 66 70 73 75 74 67 79 92 95 96 96 96 96 96 96 96
44 38 33 28 24 21 19 17 16 20 67 89 93 95 95 96 96 96_96_96
44 2715 8 S5 _3 2 1 1 .16 75 .96 98 98_98 97 97 96 96 96
44 18 6 2 0 0 0 O 1 17 75 97 99 99 99 99 98 97 95 96
44 12 2 0 0 0 O O 219 73 96 99 99 99 99 99 97 95 95
44 8 1 0 0 0 _ 0 O_ 321 79 9599 _99 99_99 99 98 95 95
44 5 0 0 0 0 0 _1 6.25 67 92 98 .99 99 99 99 98_94 94
44 & O O O O 1 3 10 28 62 87 96 99 99 99 99 98 93 92
43 & 1 1 1 2 4 9 17 33 56 78 90 96 98 _99 99 97 89 89
41 16 '8 9 10 13 16 21 29 38 50 63 _74 82 88 92 93 91 79 80
55 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 42 44 57
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Diagram 2.

Diagram 3.
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APPENDIX A

Bounds for the Driven Cavity

Suppose, for simplicity, that the cavity is unit square, then
. . < < 0.
0 08(;mln <P <o Oscmax

- 0.080 pax SV T V< - 0.088, in

0.08 (¢ . -U) +U<u=19 <0.08(, -0+

where U is the imposed speed on the top boundary. The constant 0.08 in the

maximum of ¢, which solves:

V2 + 1 =0
¢ = 0 on the boundary

For C, one uses the bound

<c

interior —

<g

min on boundary —

g

max on boundary
APPENDIX B.

Initial Mode Amplification

We discuss here briefly the behavior of the weighted mean scheme
solution of the problem:

Up_ = aod__ , (¢ = 0.01)

X XX
$(0) = ¢(1) = 1
with the initial guess:
¢y = iUk (0<w<m, O<k<N)

Using N = 2M subintervals on the fine grid, we perform m fine relaxatiomns.
(Gauss—Seidel with x increasing), then m coarse relaxations, and record
the largest magnitude of the resulting ¢ as a function of w. This is
maximum at w=m, but even at other values of w (e.g., w=T/4) this quantity

may exceed 1.

When a full multigrid procedure is implemented, there is always
convergence to ¢=1 ~ the modes, which initially grow, decay subsequently.
Comparison of results at one given speed U - columns d, e, f, (say) of
Table 4 - shows that a large ratio of coarse iterations versus fine iterations
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produces high amplification. It is to be noted that columns d, e, £ concern

a pure diffusion problem; the weighted mean scheme reduces to simple central
differencing, and yet there are some growing modes. Relaxation sweep against
the flow (U=-1, columns a, b, ¢) consistently produces the worst amplification.
Similar results may be derived by the Fourier mode analysis.
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TABLE 4. 1Initial Amplification of ¢k = e
Speed U -1 0 1
Fine/coarse
relax. 5/1 1/1 1/5 5/1 1/1 1/5 5/1 1/1 1/5
w=m M=5 2.4966 2.4972 3.0774 1.0000 5.2891 5.7665 1.0000 1.0004 1.0004
19 2.8570 4.8923 120.9650 1.0000 5.6666 | 26.9670 1.0015 3.6451 3.0393
33 1.1244 4.8289 [17.9545 1.0000 5.6666 | 27.0000 1.0013 9.7055 (19.0032
47 1.0215 4.8735 |22.0000 1.0000 5.6666| 27.0000 1.0000 9.0426 139.0100
w=m/y M=5 2.2182 2.2186 2.5088 1.0000 1.2732 1.4704 1.0000 1.0000 1.0000
19 1.6508 2.1982 2.2339 1.0000 1.4022 1.2859 1.0015 1.0016 1.0026
33 1.0769 2.0962 2.1007 1.0000 1.4103 1.2911 1.0016 1.0000 1.0250
47 1.0193 1.9888 1.9674 1.0000 1.4122 1.2925 1.0000 1.0000 1.0564
a b c d e f g h i
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A MULTIGRID METHOD FOR THE TRANSONIC FULL POTENTIAL EQUATION
DISCRETIZED WITH FINITE ELEMENTS ON AN ARBITRARY BODY FITTED MESH

Herman DECONINCK Charles HIR3CH
Vrije Universiteit Brussel , Department of Fluid Mechanics

ABSTRACT

A multigrid method for the acceleration of transonic potential flow cal-
culations based on a Galerkin Finite Element approach is described. In order
to allow the use of arbitrary body fitted meshes 1t is necessary to introduce
non uniform interpolation and residual weighting. FEmphasis is put on the
construction of these operators consistent with the Finite Element approxima-—
tion, while standard successive line overrelaxation is used as smoothing
step. Substantial convergence acceleration is obtained and results are pre-
sented for different transonic flow configurations including shocks.

INTRODUCTION

The multigrid method was originally introduced for the solution of the
system of equations obtained from the finite difference (F.D.) discretiza-
tion of elliptic partial differential equations by Fedorenko (ref.1), exten-
ded by Bakhalov (Ref. 2) and further developed by Brandt (ref. 16). It is
based on the idea that corrections for the solution on a fine grid can be
effectively approximated on a coarse grid with help of the common underlying
differential equation.

Finite Element (F.E.) applications were soon recognized and at the pre-
sent time the mathematical foundations are even better established than in
the F.D. case although practical implementations are rare. Convergence
proofs under fairly general conditions for elliptic boundary value problems
were obtained by Nicolaides (refs. 3,4), Hackbusch (ref. 5) and others. One
of the basic conclusions of these investigations is that the convergence of
the multigrid methods is independent of the step size and that the amount
of computational work for solving the discrete system of n unknows is pro-
porticnal to n. Practical aspects of the F.E. implementation on model pro-
blems are given in Brandt (ref. 6) and Nicolaides (ref. 7) who describes ex-—
tensive numerical results obtained for a Poisson equation and another ellip-
tic equation with variable coefficients and mixed boundary conditions, both
on a uniformly discretized rectangular domain. These results confirm the
convergence rates obtained with Finite Differences.

In transonic flow computations, the first multigrid solutions have been

proposed by South and Brandt (ref. 8) with the transonic small perturbation
equation and successive line relaxation (SLOR) as smoothing operator. Pro-
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blems were encountered in the treatment of the boundary conditions and in
calculations on nonuniform and curvilinear grids, probably due to a lack of
smoothing on a fine grid before passing to a coarser one or due to an unsa-
tisfactory residual weighting. Jameson (ref. 9) solved the transonic full
potential equation on an arbitrary mesh and obtained very satisfying results
with a generalized ADI as smoothing step. As in most other applications the-
se multigrid methods are implemented on a rectangular (or circular) uniform
computational mesh obtained from a mapping of the original physical curvili-
near mesh allowing uniform interpolations. This approach is appropriate in
cases where the physical problem and boundary conditions are transformed by

a global coordinate transformation as in most finite difference methods.
However, the classical F.E. approach handles the problem in the physical pla-
ne and uses only a local mapping of each curvilinear element to a reference
parent element to facilitate the volume integrations needed in the computa-
tion.

Simple uniform interpolation is only obtained if the fine mesh elements
are uniform subdivisions of a coarse grid element. This would pose a severe
limit on the finest mesh that can be achieved since only the mesh points of
the coarsest mesh could be chosen in an arbitrary way. Therefore non uni-
form interpolation and residual weighting is introduced in this paper preser-—
ving the same flexibility with respect to the geometry as the usual F.E.
methods. An advantage of the F.E. treatment is that the method leads to na-
tural choices for the interpolation and weighting, even on the boundaries of
the domain.

Indeed, a simple but articifial residual injection following the lines
of F.D. methods has been tried with poor results confirming the observations
of Nicolaides (ref. 7) on a simple rectangular domain. It turns out that
the amount of additional work due to the non uniformity is reduced due to
the fact that the same numerical coefficients are needed for coarse to fine
interpolations as for the fine to coarse weighting.

In the present investigation successive line relaxation with downstream
sweep direction is used as smoothing component. Alternatively this smoothing
operator can be replaced by the F.E. ADI method developed in the past (ref.
10).

Numerical experiments on channel, single airfoil and cascade geometries
indicate a substantial convergence acceleration compared to the grid refine-~
ment technique which consists in the application of SLOR to successively fi-
ner grids with the previous coarse grid solution as initial approximation.

EQUATION AND F.E. APPROXIMATION WITH ISOPARAMETRIC ELEMENTS

A brief account of the F.E. treatment is given here. More detalls can
be found in previous publications and the references contained there in
(refs. 13, 14, 15).
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The potential equation in conservative form is given by

(1) 3 (p ¢X) + a (p ¢ ) =

where x and y are the Cartesian coordinates in the physical plane and ¢ s ¢

the velocity components. y

The density p is obtained from the isentropic relation

y-1 1/y-1
(2) [1—Yth( +¢)]

where p, and Tt are stagnation density and temperature and vy the ratio of
specific heats.

In transonic flow regime equation (1) is mixed elliptic-hyperbolic and
allows different weak solutions for a given set of boundary conditions. If
proper viscosity terms are added to the equation a unique solutions is again
guaranteed which is equal to the physical solution except for a small region
around shocks (ref. 11).

The artificial density form of the artificial viscosity terms, due to
Hafez, Murman and South (ref. 12) is particularly well suited for F.E. appli-
cations and works satisfactorily for flows with Machnumbers up to 1.5 (refs.
14, 15). It is obtained by giving an upwind bias to the density which is re-~
placed by

(3)

AV
P =p - U pt Als

s
where L is the upwind derivative of p along the streamwise direction s, As

the meshspac1ng and ¥ a switching function with cut—-off Machnumber M which
controls the amount of artifical viscosity

(3b) p=max (0, 1 - £y

A Finite Element weighted residual approach is based on the weak formu-
lation of (1) given by

(4) R(¢)=J3vwv¢ds—j[w3ﬁds=o
on

S S
for any continuous testfunction W, where S is the physical flowdomain with
boundary s. The functional R(¢) is called residual. The integral over the
boundary is the expression of the Neumann boundary conditions (B.C.) which
are part of the problems specification. Three types of geometry are consi-
dered each giving different specific Neuman B.C. : channel geometry, single
airfoil and cascade geometry : Channel walls and blade or profile boundaries
require the no flux condition

V99
e an 0
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Points belonging to periodic boundaries in cascade geometries are treated

as interior points by letting coincide corresponding periodic points (ref.
14). At inlet and outlet boundaries either the solution is given (Dirichlet
condition) or the mass flow rate p(3¢/3n) is specified directly or in an ite-
rative way by applying a Kutta Youkowski condition at the trailing edge while
the far field condition for the single airfoil geometry is also introduced
by forcing the known massflow rate trough the far field boundary.

A F.E. approximation of a function ¢(x,y) is obtained by defining a fi-
nite dimensional space S with basis functions N: J( X,y) attached to a set of
meshpoints (i,Jj) spread over the flow domain S
h _ n
(5) d) (X,Y) = .Z. q)i,j Nij(X,Y)
1i,J
where ¢?. are the meshpglnt values of ¢ and h the typical mesh size charac—
teristitYof the space S It follows from (5) that

N . 1 ;1 for (i,3) = (k,1)

h h
(6) NS (x LY = 6.
+J K1kl +J 0 otherwise
A discrete Galerkin approximation for the weak form (4) is found by ta-—
king a finite number of testfunctions W, namely the basisfunctions of space
S, giving the following non linear system of equations for the meshpoint
values

(7) R?. = I ¢kl Kkl f?. =0
J k,l J
where K(¢h) 1s the stiffness matrix and fh the contribution of the Neuman B.C.
KKl b v, by o h _h h _ { ~ 3¢ h
(8) (¢ ) = Js (o) I, 4 VNij dS and fij = JS P o Nij ds

It is well knownthat exactly the same expression . for the residual is found
by solving the discrete minimization problem in S in cases where a minimum
principle equivalent to the equation can be formulated (as in the fully
elliptic subsonic case).

Expression (7) for the residual is developed in the physical plane and
written in physical coordinates and can be evaluated for any trial function
¢ after a choice of the type of elemepnt has been made which determines the
type of basisfunctions of the space S . In reference 15 bilinear and bigua-
dratic Lagrange elements have been used, the latter allowing third order
accuracy and parabolic approximation of the boundaries. With these elements
the integrations over an element surface (eq. 8) are usually carried out with
Gauss quadrature after transformation of the arbitrarifiyshaped element to a
unit square. In the standard F.E. treatment this transformation is the lo-

cally defined isoparametric mapping : i
h,.,h h h _h h h
(9.a) x(E,n) = L x..N..(¢,n)
i, M
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h h

bgh B th-lj(E,n)

(9.1) y (g ,n7) = 'Z. yij 3
1,J

which is completely determined by the mapping of the ? hpoints of the space
S” causing arbitraﬁb’%ocated meshpoints of the grid 8 not to be mapped
uniformy in the (£ ,n" ) plane.

The discrete non linear system (eq. T) has been solved with the usual
iterative methods such as successive line overrelaxation (SLOR) and approxi-
mate factorization (ADI) for which a F.E. version was developed (ref. 10).
The simple SLOR method is reliable but extremely slow due to the fact that
it elimates effectively only the errors with wavelength comparable to the
meshwidth h. Substantial convergence acceleration was achieved by solving
the series of N+1 problems

2
(10) Ri;.]h=0 n=N , N-1, ... , 1,0
n
defined in the space 82 h where the errors of wavelength 2™"h are eliminated
effectively and the computational effort reduced.

In this grid refinement technique the influence of the coarse meshes is
only sensible trough the initial approximation for the next finer mesh,
while in the full multigrid approach described subsequently the coarse grid
equations are modified in order to represent meaning full approximations of
the fine grid corrections.

MULTIGRID ALGORITHM

The multigrid approach is based on a different treatment of low and high
frequency errors in the approximate solution : the high frequency error com—
ponents can only be resolved on a fine grid and are fortunately eliminated
efficiently by existing relaxation techniques. Low freguency components on
the other hand are nearly unaffected by relaxation but they are scaled with
the dimensions of the physical domain and hence can be eliminated on a coar-
ser grid where the computational effort is lower and the propagation of cor-
rections trough the domain much more rapid.

Considering the system of non linear equations (eq. T7) constructed on
the finest mesh with characteristic spacing h

(11) M) = kB(e") - " = 0

which may Be written in correction form with respect to a known approximate
solution ¢n :

(12) R2(66™) = (ol + 86™) - €(eD) = - ®eD)

where the unknowns are now the corrections 6¢h given by
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h h

(13) 6% = 90 + 69

Supposing that the high frequency errors have been eliminated effectiyely by
means of smﬁothing operaticn such as SLOR or ADI, the correction 8¢ and
residual R (¢ ) may be considered as smoothly varying quantities for which
an approximation on a coarser grid makes sense. This mesh with typical
spaci 2h is obtained by dropping thehodd numbered coordinate lines of the
mesh S and an updated approximation ¢ 41 can be calculateghaccordiﬁg to
(eq. 13) by interpolating the coarse gglé approximation 8¢~ for &4 back

to the original mesh

h _ b _h _.2h
(1) Oopq = ¢, + I, 8¢
where Ih is the coarse to fine grid function int ﬁpolation operator called
"prolongation". The coarse grid approximation &§¢ for the fine grid cor-
rection is the solution of the following equation on the coarse mesh :

~2h 2h R_2h _h, h
(15) R7(8077) = - 1.7 R(g))

The fine to coarse residual restriction opeg tor RI2h constructs a meaningfull
approximation of the coarse grid residual R based on the smoothly varying
fine grid residuals.

By defining a coarse grid solution ¢2h as the approximation of ¢h on the
coarse grid :
(16) T S

where Igh is the function restriction, eq. 15 takes agaln the usual form
of eq. T1

(17) K2h(¢2h) - f2h

where the right hand side is a known function of the fine grid approximate
solution :

2h _ R:2h _h, .h 2h,_2h h

(18) 7= - L R(e ) + KT ¢))

and6¢?h can be eliminated from the updating formula (14) by means of (16)
n _,h . .h,,2h _2h,h

(19) ¢n+1 = ¢n + Igh(¢ I ¢)

The solution ¢2h in turn can be approximated on the mesh Shh when it is suf-
ficiently smooth 1.e. the whole procedure can be applied in a recursive way
to eq. (17). This non linear algorithm (F.A.S. scheme) is due to Brandt
(ref. 16) who describes an adaptive strategy for the transition to a coar-—
ser or finer grid depending on the convergence level and speed on a particu-
lar grid. A more simple fixed strategy has been used in the present work
(ref. 7) : Starting on the finestmesh with spacing h one line overrelaxation
sweep is performed followed by the transition to the next coarser grid by
means of egs. 17 and 18 until the coarsest grid is reached. On the coarsest
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grid some additional relaxation sweeps are mer formed and the solution of the
next finer grid is updated by means of eq. 19 followed by one relaxation
step until the second finest grid is reached. The cycle terminates with the
updating of the finest grid approximate solution with help of eqg. 19.

RAEhdistinct from F.D. approaches the interpolation operators Igh, Igh
aﬁd Iy %re not arbitrary but based on the F.E. interpolation spacés
8" and 8. They are considered in some more detail in the following sec-
tionsg.

THE COARSE TO FINE GRID FUNCTION INTERPOLATION : OPERATOR Igh

oh The only natural choice fﬁr tge interpolation of a coarsezﬁesh function
¢~ to a ginehmesh location (x..,y..) is to use the value of, ¢ in the lo-

cation (Xij’yij) given by the FIE.'dpproximation in space S

h . 2h _ 2h, h _h ., _ ij .2n
k,1
where the matrix Iii is given by
ij _ yeh,,h _h
(21) LS Nkl(xij’yij)

Og.an arbitrary mesh this results in non uniform interpolation coefficients
T}J and for instance with bilinear elements (figure 1) uniform interpolation
is only obtained if the fine grid meshpoints are situated in the middle of
the coarse grid element sides and in the center giving only in this case the
simple formula (figure 1a)

h 2h 1 2h 2h 2h 2h
[I2h 0 ]C =7 (¢1 + ¢2 + ¢3 + ¢h } for the centernode

h 2h _ 1 ,2h . .2h L. ..
(22) (T, ¢ 1y =3 (¢i * 4y )  for the midside node i-j
[Igh ¢2h]i = ¢2? for the corner nodes (identity)

It follows that simple uniform interpolation is only possible for uniform
refinements of the coarsest mesh which could be chosen arbitrarily.

In the general case with bilinear elements (figure 1b) four coefficients
are needed for each fine grid meshpoint not coinciding with & coarse grid
meshpoint. The computation of these general coefficients (eg. 21) is not
trivial since Nkl(x,y) is not explicitly known for an arbitrarily shaped
element and one has first to invert the isoparametric transformation (eq. 9)
to obtain &£.. and n.. from :

ij i
h 2h 2h h h )

(23.a Xx..= L X N (g, .,n..
) 1] m.p Wl m,n 1% 713
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h °hn 2h ,,h _h
(23.) y.. = I ym,n Nm,n(gij’nij)

m,n
after which the computation is carried out in the &-n plane where the basis-
functions are simple polyrnomial expressions

ij _2h b h oy _ 2h h h

(24) I Nil(xij’yij) Mo (£ oy S

With the bilinear elements for instance Ngh(g,n) is of the form
2h 1

(25) N (g,n) = (1££)(1n)

when the four corner points are situated at (E,n) = (+1,%£1)

Fig. 1a : Uniform interpolation Fig. 1b : Non uniform interpolation

FINE TO COARSE GRID FUNCTION INTERPOLATION (RESTRICTION) : OPERATOR Iih

The value o ¢h in the coarse mesh location calculated with the F.E. ap-
proximation in S leads to the identity since the coarse gridpoints belong
also to the fine grid.

2h ,h h, 2h 2h h h ch 2h
I X ) = ( )

p ¢y = e (xys) = kzl O1 Mep (X507 5
b1

(26) [
which due to (eq. 6) reduces to
h

1j

This type of restriction is sometimes called injection.

2h .h B
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FINE TO COARSE GRID INTEGRAL INTERPOLATION : OPERATOR Rlih

As distinct from the F.D. case the residual is an integral quantity
which is scaled differently on different grids. It cannot be represented
in the spaces 8§ and S and the previous interpolation rules are inapplica-
ble. In the CGalerkin approach the volume integrals are always of the form

2h, 2h _ 2h 2h

For instance the residual in eq. T can be rewritten in this form with :

(29) g(67) = v(p(P) veoh)

A consistent representation of R2h by means of fine grid quantities is
found by approximating the coarse mesh? functions in the integrant of (eq. 28)
with fine mesh interpolations in the space S, namely

R_.2h _h 2h __2h 2h .h
(30) e o is = Jsgh I N g1~ ¢
ij
where S?h is the coarse mesh residual integration domain, i.e. the part
of S whete N2B # 0 (figure 2).
iJ

The interpolation of ¢h(x,y) to the coarse mesh leads again to the iden-
tity since the interpolation of meshpoint values is the identity by virtue
of eq. 27 :

) as

2h .h h h h
(x,y) = £ N Goy) L0 el = T N (ey) o) = 67(ay)
K,1 k1 k1 K,1 k1 k1l

(31) 2h o"

In the ﬁame way the coarse mesh basisfunction N (x,y) is approximated in the
space S

2h 2h 2h _2h, h h
(32) I (x,y) =3z Nh (x,y) I N. (xk WV )
h k,1 1°Yk1
which due to eq. 27 and 21 leads to
. 2h 20 _ k1
(33) I" N2 (xy) 2 e (x,y) I:

The final expression for the coarse mesh residual weighting by means of fine
grid quantities is obtained from eq. 30 by inserting the expressions (31)
and (33)

(3L) [fro" Rh]ij = 3 ¢4 [ o Moo (x,y) a(s") as
S..
1J

On a uniformly subdivided coarse mesh (figure 2a) it is clear that this
general expression reduces to
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(35) R2h h,  _ 1 n
L, Ry, kfl I?j Re1

where the summation extends only over the 9 inner points in the domain S?g
since the coefficientinj are zero on and outside the boundaries of Sij' J

Comparing egs. 20 and 35 one concludes that the coarge to fine mesh in-
terpolation Igh is the adjoint of the residual weighting Rlih since they
have transposed coefficient matrices

h . %h _ ij .2h
[I2h ¢ ]ij B kzl Tkl %
(36) >
R.2h _h _ k1l _h
[I," Bl 5= % I;5 Ry
k,1

The following result is obtained for uniform subdivisions (figure 2a), which
corresponds to the uniform interpolation (22)

, 2h _h h 1,.h h h h
.. = R.,. + =R, . + R, . + R. . . .
(37) [Ih R ]lJ RlJ 2( i,J+1 1,31 1-1,3 M R1+1,J)
1,.h h h h
+ —\R. . + R. . . . . .
TR 1 et Biwt ot Y Ricq se T Riog 5o)

. 2h . .. . . . . .
Fig. 2a : Sij uniformly subdivided Fig. 2b : Arbitrarily subdivided mesh
mesh
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On an arbitrarily subdivided mesh (figure 2b) the situation is different
due to non overlapping integration domains for the coarse and fine mesh. If
one is willing to apply the formula (35) with summation over the 9 innermost
meshpoints in figure 2b and with the correct non uniform coefficients, two
sources of errors are introduced with respect to the exact formula (3h)

. First the contributions of points (it1,j+2) and (i2,j+1) lying inside the
coarse residual integration domain are omitted. For mildly distorted grids
thelr contributions are negligible since the coefficients I+ are small
near and zero on or outside the limits of SZI and also due ¢ the fact that
the integral in eq. 34 extends over only two'fine mesh elements compared
to L for the other points.

. Secondly the fine mesh integration domain for points (i%1,j+1), (i,j*1) and
(it1,)) are not always completely contained in the coarse mesh domain S%..
Again the errors are small since the surface differences are small and +d
more over since the integrants in eq. 34 approach zero near the limits of
the fine mesh integration domain.

In conclusion, eq. 35 remalns an extremely valuable approximation for
eq. 34 in the arbitrary mesh case, of course only when used with the arbitra-
ry mesh interpolation coefficient Ilj already known from the non uniform
interpolation.

It remains equally valid on the Neumann boundaries of the physical do-—
main where the summation extends over 6 fine meshpoints and L4 for boundary
corners.

The same expression derived here was also obtained for orthogonal meshes
by Nicolaides (ref. T7) and Brandt (ref. 6) based on the minimization approach
Brandt suggests that this '"natural" choice is not always better than the re-
sidual injection which is simply given by

R_2h h

(38) "L, R ]ij =4 Rij

in the uniform case.

This has not been confirmed by Nicolaides in his numerical experiments
on a square uniform domain. On an arbitrary mesh residual injection could
be constructed with some theoretical support by supposing the function g(¢h)
constant over the coarse mesh residual integration domain allowing the fol-
lowing approximations

2h _ . 2h 2h
(39)

h h

and hence

R.2h _h h fNib ds
(ko) 15" RY.. = R, ——
b +d ow?. as

ij
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giving exactly expression (38) in the uniform case.

Computational experience with eq. 40 was highly unsatisfactory and
showed that it is inapplicable, at least with the simple smoothing procedure
used in this paper.

COMPUTATIONAL RESULTS

The convergence of the computation is measured by the evolution of the
average residual on the finest grid in terms of the work count which is de-—
fined in units representing the work needed for one line relaxation sweep on
the finest mesh. For instance, the work count of one complete multigrid
eycle with four grids and for the present strategy is given by

1+2(%+%) +%g= 1,91 units

plus the additional work for the residual weighting and other interpolations.
The convergence rate as used below is defined as the mean reduction in the
average residual per unit of work. An initial approximate solution on the
finest grid for the multigrid iteration is calculated by applying the grid
refinement technique with five relaxation sweeps per grid.

A1l computations are carried out on a fine mesh with 73 x 25 meshpoints
and successive coarser meshes of 37 x 13, 19 x 7 and 10 x 4 meshpoints.
Three sets of testcases are presented with different geometric boundary con-
ditions.

The first set is the non lifting NACA 0012 single airfoil configuration
for which the mesh generation method of ref. 17 was adopted, however lea—
ving out the symmetric lower half part of the mesh since only symmetric non
lifting flows can be treated with the present code which is primarily inten-
ded for cascade flow computations.

With a free stream Machnumber of .80 the standard workshop mesh (ref.17)
was used. In figure 3 the pressure distribution with a shock of moderate
strength is compared with the results obtained by other participants showing
good agreement. The evolution of the average residual is given in figure 5
where the influence of the number of grids is apparent. The convergence ra-
te is improved from .967 for 2 grids to .900 for 4 grids. The high speed
with which the flow pattern is established is illustrated on figure U4 where
the pressure distribution obtained after 1, 2, 4, 7, 10 and 13 multigrid
cycles is shown. The solution is converged after 10 cycles except for a
small overshoot ahead of the shock which is suppressed after 13 cycles, when
the average residual is still only reduced by 2 1072.

The residual evolution for the grid refining method is also plotted on
figure 5, beginning at 50 work units which is the amount of work carried out
on the coarse grids before passing to the final mesh. A very fast initial
reduction of the mean residual is seen which corresponds to a fast suppres-—
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sion of the high frequency errors by the consecutive relaxation sweeps. The
remaining low frequency errors are not eliminated and cause the convergence
to slow down after a small number of relaxation steps.

Figure 7 shows the solution for the flow at Mach .85 containing a strong
shock from M=1.4 to M=.7. For this solution the workshop mesh was used with
a far field boundary at 8 chordlengths from the airfoil. The convergence
history is plotted in figure 6 showing a rate of .957 with b4 grids. The con-
vergence rate with grid refining approaches 1 after 50 SLOR iterations and in
fact no further improvement of the solution could be obtained although it was
not converged as is seen in figure 7, dotted line. The non converged solu-
tion has a sharp shock shead of the correct converged shock position and is
very similar to some of the non conservative solutions presented in ref. 17.
As can be seen in figure 8 the correct shock position with the multigrid
scheme is already obtained after 50 work units (21 multigrid cycles) with a
mean residual reduction of only 5 10°°, showing again the extremely fast eli-
mination of low fregquency errors.

The second set of results is calculated for a channel flow with a cir-
cular bump on the lower wall with the standard workshop mesh (ref. 17) which
is a sheared Cartesian system. It was given as a testcase with an isentropic
inlet Machnumber of .85. This Machnumber corresponds to a choked flow for
the potential solution as was confirmed by the results of Vewlllot and Vi-
viand while Jameson did not succeed to obtain a solution for a Machnumber
higher that .835. On the other hand, all other potential solutions, inclu—
ding our grid refinement solution were far from choked namely with a peak
Machnumber of *.92 on the upper wall. Again it is clear that this solution
is not converged. Indeed the multigrid solution converges at M=.849 with a
choked solution as is shown in figure 10 for the pressure distribution and
figure 11 for the isomach lines. In this cage 300 work units were performed
with amaverage residual reduction of 4.2 107°. The pressure distribution
(figure 10) is compared with the solution obtained by Veuillot and Viviand
at M=.8500 with their pseudo time dependent fully conservative potential
method (ref. 17). Our solution at M=.85 diverges due to the fact that at
this Machnumber the imposed massflow rate is higher than the choking massflow
obtained at M=.8L9. In figure 9 our solution at M=.835 is compared with the
solution of Jameson obtained with his multigrid ADI scheme (MAD) on a 65 x
17 meshpoints grid allowing 4 or 5 different grids. The residual evolution
with our method (figure 12) shows a constant convergence rate of .963 after
an oscillatory behaviour during 100 work units. The rate obtained by Jame-—
son with MAD for this case was slightly slower namely .9742 (ref. 17).

The final result is a suberitical compressor cascade flow. The mesh is
generated by solving a system of elliptic partial differential equations for
the curvilinear £-n coordinates (ref. 14). The convergence history is shown
in figure 13 and compared with the grid refining. The rate obtalned with
four grids is .874 and illustrates that the periodic and Neumann boundary
conditions have no adverse effect on the convergence speed obtained with our
multigrid scheme although no special treatment of the boundaries as sugges-—
ted by Brandt has been introduced.
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CONCLUSION

A conceptual simple multigrid scheme has been developed consistent with

the finite element method and applicable to general arbitrarily generated
body fitted grids. Therefore non uniform interpolation and residual weigh-
ting operators had to be introduced. A fast and reliable method is obtained
with the simple straight forward line relaxation scheme as smoothing step
allowing the calculation of realistic transonic flows with about 10 to 20
multigrid cycles (30 to 50 work units).
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MULTI-GRID SOLUTION OF THE NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

Laszlo Fuchs
The Royal Institute of Technology, Stockholm

SUMMARY

The numerical solution of the Navier-Stokes equations in general two dim-
ensional domains is considered. A proper finite-difference approximation to the
governing equations, on non-staggered grids, in a transformed plane, is formu-
lated. Several aspects of a Multi-Grid method for the solution of the finite-
difference equations are described. The emphasis in this paper is on the effi-
ciency of some relaxation schemes and the transfer among the grids which are
non-uniform in the physical plane.

INTRODUCTION

Multi-Grid (MG) methods have been applied with success to many boundary
value problems. Both elliptic equations [1-4] and mixed elliptic-hyperbolic
equations [5-7] have been solved with high efficiency. However, the MG method
is not, yet, considered to be a general purpose method because of its relative
complexity. The method is usually sensitive to basic errors which can be made
even by a MG-minded user. For this and other reasons it is important to under-
stand not only the basic principles of the MG solution procedures but also to
develop, as general as possible, user oriented codes for the solution of spe-
cific equations. In this work we discuss some aspects which are of importance
for the development of Navier-Stokes solvers in general two dimensional domains.

In most applications so far, the MG codes have been written for problems
in cartesian coordinates. This is natural for testing the basic principles of
the method. The idea of using uniform cartesian grids has been extended to
include globally non-uniform grids, by using a sequence of uniform grids such
that some of these are applied locally [1]. This approach can be used without
too much difficulties if the boundaries of the computational domain can be
approximated easily by rectangular meshes. For general gecmetries such an app-~
roach might be too complex and less accurate than the method of the transfor-
mation of the coordinates.

We distinguish between two cases where mesh refinements are needed in the
physical plane. That is, when the mesh should be refined in order to resolve
geometrical details, or when physical details of the solution are to be re-
solved. The purpose of the transformation of the coordinates is to make the
treatment of general geometries easier, while the mesh refinements needed to
resolve the solution are to be treated adaptively as part of the solution pro-
cedure. Mesh refinements can be done if and when such are needed by introducing
fine uniform meshes locally, in the rectangular computational domain (e.g. in
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the way that is described in reference 1).

By the transformation of the coordinates, the boundaries become coordinate
lines and this simplifies the application of the boundary conditions. Tha main
disadvantage of such transformations is that the equations may become more
complex. "New" terms turn up and the coefficients multiplying the derivatives
may vary consideribly throughout the computational domain. Beside the complex-
ity in programing, the transformation of the coordinates may reduce the comp-
utational efficiency of methods which work well on uniform cartesian grids.
Thus, working with transformation of the coordinates means that additional at-
tention must be paid to the formulation of the governing equations, the dis-
cretization of these equations, the choice of the relaxation scheme and the
transfer among the grids. In this work we discuss some of these aspects with
regard to the MG method for the solution of the Navier-Stokes equations in a
plane. The governing equations are stated and discretized "elliptically". A
proper choice for transfer among the grids is related to the governing equa-
tions. By such a transfer the continuity equation and the compatibility con-
dition can be satisfied to the same accuracy nn all grids. Some relaxation
schemes, including the so called "Convective'" Successive Line Relaxation (C-
SLR) scheme for the momentum equations, are described. These are analysed by
local mode analysis and are tested for some coordinate transformations anddif-
ferent values of Reynolds numbers. The C-SLR scheme is superior to standard
schemes, and it may be used as a general purpose relaxation scheme in many
cases., Preliminary results for the sglution of the Navier-Stokes equations for
the flow in rectangular and polar cavities are also given.

THE GOVERNING EQUATIONS

The steady state Navier-Stokes equations for incompressible viscous New-
tonian fluids, in two dimensional cartesian coordinates, are given by

Ut Uy = Py ™ Re (uuX + vuy) =0 (1.a)
v + Vv - - Re (uv_ + vv =0 1.b
xx © Vyy T Py (wv, y) (1.b)
u, + vy =0 (1.¢c)

where Re is the Reynolds number, u and v are the dimensionless velocity comp-
onents in the x and y directions, respectively. p is the dimensionless pres-
sure scaled by the Reynolds number.

Proper boundary conditions are defined if the velocity vector q = (u,v)
is given on the boundaries, provided that the compatibility condition

I (uX + Vv ) dx dy = sg°n dl (1.d)
Q Y )
=0

is satisfied. (32 is the boundary of the domain & and n is the outward point-
ing unit vector normal to 3q).
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Usually no slip boundary conditions are taken on the surface of physical
bodies. Mixed boundary conditions may be used in cases of symmetry.

When the physical plane is transformed into the computational plane (g,n)

the governing equations can be written in the form:
JL (C1UE + C3un )g
- Re[u(é:xuE + nxu”) + V(Eyu

+ (Cjug + CZUn )n] - (ExpE +nxpn)

£ + nyun)] =0 (2.a)

Jl (C1v£ + Cov ).+ (CBVE + szn )n] - (Eypg +nypn)

- Rz[S(EiVE + nxvn) + V(EyvE + nyvn)] =0 (2.b)
( Elg + U+ BV +onv ) =0 (2.¢)
where C, = (&5 + E; )/3J
C, = (n} + n; )/ J
€5 = (En + Eyny)/J
and J = Ex”y - Ey Ny

u and v are the components of the velocity vector q in the x and y directions,
respectively.

Due to the transformation of the coordinates the boundary conditions are
simplified in the sense that u and v are given on the boundaries of a unit
rectangle in the ¢£,n plane.

Equations (2) are written in a non-conservative form. Conservative forms
are preferable in many cases. Such a form is essential for the continuity
equation (2.c). It can be written in conservative form as:

d_+4V =0 (3)
£ n
where 0 and ¥ are the velocity components of g in the ¢ and n directions, res-
pectively.
0o (g u+¢gv)/J
and X Y
Vo= (nxu + nyv)/J

The integral of equation (3) on any closed (simply connected) domain @
gives:
SI(@_ + ¥ ) dg dn = s(u,v)e*n dl (4)
Q & n 8%

The compatibility condition is satisfied if the flux through the boundaries
vanishes. The numerical integral analog to equation (4) is important for the
correct transfer of residuals from fine to coarse grids. The momentum equa-
tions are left in their non-conservative form (eqs. (2.a) and(2.b)).
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FINITE-DIFFERENCE APPROXIMATIONS

The system of the governing equations (1) is elliptic. It is, therefore,
natural that this property shall be transfered to the finite difference app-
roximations as well. Some concepts of ellipticity of finite difference equa-
tions (as the mesh size goes to zero) are described in reference 2 and the
references in that paper. For finite mesh size, Brandt and Dinar [2] use the
concept of hT-ellipticity measure. This concept is directly related to the
possibility of devising a proper relaxation scheme in the MG sense.

For simplicity we consider the discretization of the problem in car-
tesian coordinates, The following notations for the finite difference app-
roximations are used:

F F
3, = ¢ )i+1,j - ( >i,j]/h ay = [( )i,j+1 - )i,j]/h
B B .

8, = [( )i,j - ( )1—1,j]/h ay = [ )i,j - ( )i,j—1]/h
85 = (Bi + BE)/Z 85 = (as + 35)/2

32 = aF aB 3% = aF aB

X X X Y Yy vy

2 = 32 + 32
X Y

where h is the mesh size in both x and y directions.

First, the Stokes problem (Re = 0) is considered. If second order accu-
rate central differences are used (on non-staggered grids) to approximate
all the terms in equations (1), then one may write the finite difference eq-
uations as:

Lh $ = R (5.a)
with 2
rv2 0 aC
h X
C
- 2
Lh =10 Vh ay
aC aC 0 J
L X y
o = (u,v,p)T

R = (0,0,0)7

The symbol of (see Section 3.2 in reference 2), Eh(&l,sz), is given by

bh

Ch(el,sz) o (cos$, + cos$, -2) (sinzs1 + sinzsz)
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This operator is not elliptic (it is quasi elliptic) and a solution of equa-
tion (5.a) approximates the solution of the differential equations only in
average.

Elliptic operators may be obtained if staggered grids are used together
with central differences. Such grids has also, been used for the time depen-
dent case [8]. Brandt and Dinar [2] have used staggered grids for the solution
of the two dimensional Navier-Stokes equations in cartesian coordinates. In
reference 9 a version of this method has been compared with other MG solvers
of the Navier-Stokes equations. An application of the three dimensional stag-
gered grid solver is described in reference 10.

Staggered grid formulation looses its attractiveness when cross terms
are to be discretized. Such cross terms may appear after the transformation
of the coordinates. For this reason we use, here, non-staggered grids. An el-
liptic approximation to equations (1) is obtained by the following operator

L,, in equation (5.a):

F
2
Wﬂ 0 Bx
F
- 2
L, =1|0 v 3 (6)
2 8 0
X y
3 o
Thus  det Lh = Vﬁ (a; + a;), with the symbol proportional to (cos$,+ cosé$,

—2)2. This symbol vanishes only for ¢, = 8, = 0 (mod 27). This means that the
approximation to the differential equation is elliptic. It may be noted that
F and 3B may be interchanged without having an effect on the ellipticity. It
is also clear that such an approximation is of first order accuracy. However,
even if the staggered grid approximation is of second order accuracy inside
the computational domain, the boundary conditions are applied with first order
accuracy. The total accuracy of both approaches (staggered and non-staggered)
is of first order for the velocity components [8]. Moreover, when the non-
linear (convective) terms are included (Re> 0) central differences (for these
terms) may be used only if the cell Reynolds number, Re, = max(|Rehu],|[Rehv]|)
is less than unity. For higher Reynolds numbers the symBols of the approx-
imations both on staggered and non-staggered grids is not elliptic. To pre-
serve the ellipticity for all Reynolds numbers one has to use upstream app-
roximations (usually of first order accuracy) to the convective terms (see
e.g. reference 11).

A result of approximation (6) is that the standard five point approxima-
tion to the Poisson operator is satisfied if it is applied on the pressure
found by solving system (5.a) with (6). That is, the pressure, in contrast
to the velocity components, is computed with second order accuracy.

The generalization of approximation (6) on non-staggered grids to the
transformed equations (2) is done in a straight-forward manner.
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THE MULTI-GRID CYCLING PROCEDURE

For MG solution procedures one defines a sequence of M grids with mesh
spacings h1""hM such that the finest grid has the spacing hM. Usually
by 1/h = 2 (1 <k <M). The MG cycling procedure for the solution of the sys-
tém of the algebraic equations
LMcpnfM
on a grid with spacing hM’ is as follows:

i. Relaxation sweeps are carried out (on the problem Lk 9, = fk), on
the grid k until the convergence is too slow,

then either

ii. The problem is transfered to a coarser grid, where new relaxation
sweeps are done. This transfer (for the FAS-mode) is given by:
fo.o=L, I s 1K (F - L )

k-1 k-1"k-1 Pk k-1 "'k k %k

where IX . is the transfer operator from the fine grid (k) to the
coarse grid (k-1).

Or if convergence to some accuracy has been obtained, then:

iii. The correction is transfered to a finer grld These corrections are

smoothed out by relaxation sweeps (step i.).

The procedure ends when the prescribed accuracy is attained on the finest

grid. In the following sections we discuss some relaxation schemes (step i.)

and proper transfer operators Ik_1(step ii.).

THE RELAXATION PROCEDURE

The purpose of the relaxation steps in any iterative solution process is
to smooth out the errors. In a MG-procedure this smoothing process may be
restricted to those Fourier components of the error which can be described
on a given grid but not on coarser grids (high frequency components). The
efficiency of the relaxation procedure(provided that no large-amplitude low-
frequency errors are generated during the transfer among the grids) determines
the overall efficiency of the MG solution procedure.

When a system of difference equations approximating a system of diffe-
rential equations is to be solved, the efficient relaxation of each equation
(variable) does not neccessarily result in an efficient scheme for the system.
This happens if by relaxaing one equation, new high frequency error compo-
nents are introduced in the residuals of the other equations. A way of
(almost) decoupling the relxation of the finite difference approximations to
the continuity (1.c) and the momentum equations (1.a) and(1.b) has been sug-
gested by Brandt and Dinar [2] for the staggered grid approximation. Here,

a similar disributive Gauss-Seidel (DGS) relaxation scheme for the non-stag-
gered grid approximation is described.

We consider, first, the linearized Navier-Stokes equations (with frozen

coefficients) in cartesian coordinates, discretized on a uniform grid with a
mesh spacing h. The finite difference approximation can be written as:
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Qu-ap =0 (7.a)
F

Qv - 3. p =20 (7.b)
y

2By + 2Bz 0 (7.c)

X Y

h
to the first derivatives of the convective terms.

where (Q = v2 - Re (u3x + vgy), and 3x and Ey are the upstream approximations

Equations (7.a) and (7.D; can be relaxed by solving (pointwise or line-
wise) for u and v, respectively., Efficient relaxation procedures have been
developed for these equations bhoth in cartesian and in general curvlinear-
coordinates.

The relaxation of equation (7.c) is more complex since if only u and v
are changed, new (high frequency) errors are introduced in equations (7.a)
and (7.b). This in turn means that the relaxation efficiency (of the high
frequency error components) of the system may be very poor. If, on the other
hand, for any function x, the dependent variables are changed (au, av and ap)
according to equations (8) then Fhe rFsiduals of the momentum equations shall
not be altered (provided that Ga = 3 Q).

F
AU = axx (8.a)
AV = an (8.b)

and Y
ap B Qx (8.c)

A particular choice of x, which is convenient, is to take it to be equal
8§ at the node point at which equation (7.c) is to satisfied, and zero else-
where. Such a choice means that the velocity vector is changed at three node
points while the pressure is changed at five node points simultaneously.

Inserting equations (8) into (7.c) gives

B B
2 = -
Vix = (axu + ayv) (9)

For our particular choice of x,
5 = (3u + aov)/(6/nD) (10)

If equations (8) are used then the residuals of the momentum equations
are unchanged at all node points except at those adjacent to the boundaries.
The reason for this is that at these points equations (8.a) and (8.b) are
not valid (since u and v are specified on the boundaries, and they cannot be
changed). The residual near the boundaries is changed by a factor §/h} which
is of the same order as the original residual in the momentum equations.

If the momentum equations are written in terms of the velocity comp-
onents which are parallel to the transformed coordinates, one gets equations
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of the form ~
QTU - ng =0

QZV - Bnp =0

and Q, # Q, in general (e.g. cylindrical coordinates). Under such circums-
tances one Cannot design a distributive relaxation scheme which will preserve
the residuals of both momentum equations. In all such cases one has to use

a common part of 01 and Q, such that the change in the residuals in both eqg-
uations will be smooth and of at most the order of the errors which are gene-
rated near the boundaries. Such DGS relaxation schemes can be evaluated by
local mode analysis for the system.

An important aspect which must be considered together with the distribu-
tive relaxations, is the accuracy in satisfying the compatibility condition
(1.d). Again, we consider first the case of cartesian coordinates. Using the
sided differences, as in (6), the compatibility condition can be written as

‘E.(asu + aSv) h2 =z (u1 - uO)h + 3 (v3 - vz)h (11)

1,J J 1
where the subscripts 0,1,2 and 3 denote the values of the dependent variables
on the sides of the computational rectangle. It is clear that the right hand
side of equation (11) must vanish if the compatibility condition is to be sa-
tisfied. However, the question is what accuracy is tolerated in the numerical
integration (11). Is it enough if the compatibility condition is satisfied to
the truncation errors, or the accuracy must be that of the round-off errors?

To answer this question we consider the system of the algebraic equations
(for §) which is obtained from equation (9). The sum of the terms on the left
had side of these equations vanishes (to round-off). This means that the eq-
uations of the system are linearly dependent. On the other hand, the right
hand side equals to the left hand side of (11). This implies that in order to
have a solution to the system of difference equations, the compatibility con-
dition (11) must vanis (to round-off). A unique solution (for &) can be ob-
tained if the value of & is specified at some point. The corrections in the
velocity components (8) which are equal to the derivatives of the ¢ field,
are not dependent on this prescribed value.

If non-conservative form of the continuity equation, is used then the
compatibility condition can be satisfied only to a certain accuracy (the trun-
cation error). This in turn means that the DGS relaxations can converge only
to a certain level.

The numerical compatibility condition must be satisfied on all grids,and
this must be taken into account when the velocity components are transfered
to coarse grids.

FINE TO COARSE GRID TRANFERS

As discussed above the validity of the compatibility condition (to round-
off error) is a condition for the existance of a solution. To satisfy the
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compatibility condition on the coarse grids to the same accuracy as on the
fine one, the transfer from the fine to the coarse grids should be chosen
carefully,

The discretized counter part of equation (4) is
- 1 1 2
Sy -iZJ{[J(Exu + EYV)]E + [5(nu + "yV)]n}hk (12)
?

where i, j denotes the node point (Ei,nj) and h, is the mesh size of a grid

k
with the label k. Since equation (12) is in conservative form, one gets that
Sk equals to the flux through the boundaries of the domain. That is,
. 1 1 1 3
5,/hy = ? [5(g u + Eyv)]O + i [5(nu + nyv)]2 (13)

To satisfy the compatibility condition, the right hand side of equation
(13) must vanish on the finest grid (k o M).

In the FAS-mode the residuals and the dependent variables are transfered
to the coarse grids. The right hand side of the continuity equation on coarse
grids should be compatible with the flux integral ( the sum in equation (13)).
If the sum in equation (12) vanishes on the grid k, then it will vanish also
on the grid k-1 if

- 2
S_q = Em._q hi, (14.a)
and 1 1 hﬁ
Me_q = [ Z{[j(ixu + Eyv)]g + [j(nxu +nYV)]ﬂ}]ﬁz;1 (14.b)

where the sum in equation (14.a) is over the indices of the coarse grid (k-1)
and the sum in equation (14.b) completes the first sum so that all the node
points of the fine grid (k) are covered.

Equation (13) can be written as

U1 V.3
S/h =t 5]y + 2 1515 (15)
J i

where U and V are the components of the velocity vector in the ¢ and n direc-
tions. A natural transfer of U and v from the grid k to the grid k-1, is by
weighted averages,with the Jacobian as weighting function:

U,_q = (x uk/Jk)Jk_1 and Vieeq = (z vk/.]k)Jk_1 (16)
with the sums as in equation (14.b). If relations (16) are used then the

fluxes through any closed region of the domain, are the same and are indepen-
dent on the grid which is used for the computation of the fluxes.

SMOOTHING FACTORS OF RELAXATION SCHEMES

The efficiency of relaxation schemes can be estimated with good accuracy
by using the method of local mode analysis [1-3,5]. Fourier components which
are of interest from MG point of view have wave lengths which are of the same
order as the mesh size. Other error components may be considered as slowly
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varying and thus they do not contribute much to the variation in the residual
in neighbouring poeints. The interesting Fourier components (of high frequen-
cies) have short range of effect and therefore boundary effects may be neglec-
ted. By local mode analysis it is ment that one considers how the amplitude,A,
of a Fourier component exp(i ¢,/h + i $,/h) of the error is reduced by one
relaxation sweep (carried out on the equation with frozen coefficients). The
amplification factor of the amplitude is denoted by u = u($,,9,) and the
smoothing factor u is defined as

v o= max [p(8,,8,)] (17)
where the maximum is taken over the high frequency components (i.e. those com-
ponents which can be described on a given grid but not on coarser ones).

In the following we derive the amplification factor for some relaxation
schemes for the momentum and the continuity equations.

For the relaxation of the momentum equations we consider the following
linear operator:

_ 2 2 _ > >
Ly = Cq30 + €32 Re(Cjag + Caan) (18)
where C and C, are taken to be constants. For the Fourier component

exp(is, g/h ¥ 182n/h) et r be the amplitude of the residual before a relax-
ation pass, r its amplitude after the pass, T the amplitude of the dynamic
residual and A be the amplitude of the correction.

For a pointwise Gauss-Seidel (Successive Point Relaxation, SPR) relaxa-
tion scheme, the dynamical residual is given by

F =+ AL(C, - RehH(Cy)) €7t 4 (C, - RehH(C,)) & T%)/n?

where

The residual after the pass, T, is
F o= AL(C, - RehH(-C3)) &% + (C, - RehH(-C,)) e 21/

For SPR, A is solved from:

T + Al-2(C, + C,) - Reh(|Cy| + |C 1)) = O (19)

which gives that [C1 . RehH(—CB)] RN [Cz N RehH(—Ca)] eiez (20)
u(&l,az) = - -
_ -i%, _ -is,
Z(C1 + CZ) C1 e C2 e + Reh NT
where
_ -i$, -i9,
NT = |C3| + |Ca| + H(CB) e + H(Ca) e

For cartesian coordinates and small cell Reynold numbers, Re_, the smooth-
ing factor equals that of the Poisson equation, i.e. u @ 0.5. For large cell
Reynolds numbers the smoothing factor depends strongly on the sign of C, and

(the relative direction of the relaxation sweep and the flow direction).
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If the relaxation direction and the flow direction are alligned then the smoo-
thing factor equals 1/3 for a wide range of values of C, and C, (see Table I).
If the relaxation direction is against the flow direction u is“very close to
unity. In general cases when the flow direction is not known in advance, one
can make two relaxation sweeps in opposite directions. In,such a way the ave-
rage smoothing factor,per sweep, would be less then (1/3)*. This type of double
sweeps is called symmetrical relaxations. Difficulty arises also for small Re

when C1>>C2 or C2>>C1. In these cases the relaxation efficiency is poor, but

it can be improved if Successive Line Relaxations (SLR) are used. The amplifi-

cation factor u($,,%,) for (£-) SLR applied on (18) (solving for each line

£ = constant), is: c, - Reh H(-C3)
U(slysz) =]

2(C1 + CZ - cos%,) - C1 e

-ig, i¢,
NT o H(CB)E + |C3| + |C4l - H(—Ca)e + H(Cﬂ)e

(21)

“1%1 . Reh NT

where -i%,

The g£-SLR scheme is efficient if C,>0 (independent of C,) or for small
values of Re_ if C_>>C (e.g. when the fesh size in the n direction is larger
than that in the 3 diﬂection). If on the other hand, C,>>C, , one can use
n-SLR instead of g£-5LR. In general cases, when the computational field con-
tains large variations in C,/C,, good smoothing factor is obtained if E-SLR
is followed by n-SLR. This fyp€& of relaxation is called Alternating Direction
SLR (AD-SLR). £-SLR is efficient if C,>0 (independent of C,) but as the cell
Reynolds number increases and if the %low and the relaxation directions are
against each other (C,<0), then u is close to unity (see Table 1). General
flow fields can be relaxaed by symmetrical SLR sweeps.

To improve the simple SLR for cases of general geometry, a modified SLR
has been tested. The basic idea is to introduce a term for the correction
problem which simulates a high Reynolds number flow in the relaxation direc-
tion. One way to achive such a term, implicitly, is to add part of the correc-
tion to the approximation on the line just up-steam the line which is being
updated. In some sense the method resembels distributive relaxations even
though the purpose and the motivations are completely different. Since the
term which is added to the correction probelm has a convective character, the
scheme is called Convective Successive Line Relaxation (C-SLR).

In C-SLR like in SLR, each line (e.g g=constant) is being updated simul-
taneously. The correction at each point j (on the line i) is 6, and o§. is
added to the variables at the node point i-1,j. If « = 0, then/C-SLR id iden-
tical to SLR.

A local mode analysis for C-SLR (solving each line g=constant) gives that
the amplification factor is given by:

c, (1~ 2a +aet®1) o 2C,a(coss, ~ 1) - RehNT1
U(s],,'sz) = T (22)

Cyla - 2) + 2C,(coss, - 1) + c1e‘1Sl ~ Reh NT2

where
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{aC , if C.>00  {C,a(1 - e *%%), if ¢, >0
N1 . 5 3700 4
151 - o + ae™®1), if C,<01  {Cua(e’’ - 1), if C,<0)

-i9 . -i8 .
C5(1-0a) - e AT T C;>01  {C,(1 - e ey C,>0

+

NT?2 is
(-Cy , if C4<01  {C,(e"72 = 1) , if C,<0)

In Tables I we compare the smoothing factor of the SPR, £-SLR (C-SLR
with o = 0), C-SLR with near optimal value of o (o ), and C-SLR with a
fixed value of o (a= 0.25). In Table I.a the relax8t26n direction is alligned
with the flow direction (C, = C, = 1). In Table I.b the results are for the
case when the relaxation and thé flow directions are against each other.

TABLE I. - SMOOTHING FACTORS FOR OPERATOR (18)
Table I.a: Cy =1, C, = 1

3 4

Re c,/C SPR SLR C-SLR C-SLR

h 1772 -
a=0 u o a=.25

no

0.05 0.909 0.447 0.277,0.25 0.277
0.10 0.835 0.447 0.277,0.25 0.277
0.50 0.567 0.477 0.254,0.30 0.277
0] 1.00 0.500 0.447 0.254,0.30 0.277
5.00 0.721 0.714 0.333,0.50 0.565
10.00 0.835 0.833 0.467,0.60 0.737
50.00 0.962 0.962 0.855,0.60 0.937
0.05 0.333 0.036 0.036,0.00 0.340
0.10 0.333 0.068 0.068,0.00 0.323
0.50 0.333 0.243 0.159,0.10 0.224
1 1.00 0.333 0.333 0.154,0.25 0.154
5.00 0.525 0.620 0.256,0.40 0.420
10.00 0.670 0.767 0.391,0.60 0.632
50.00 0.909 0.949 0.785,0.60 0.907
3.05 0.333 0.004 0.004,0.00 0.493
0.10 0.333 0.008 0.008,0.00 0.488
0.50 0.333 0.038 0.038,0.00 0.453
10 1.00 0.333 0.072 0.072,0.00 0.412
5.00 0.333 0.254 0.119,0.20 0.188
10.00 0.333 0.414 0.160,0.30 0.162
50.00 0.671 0.796 0.404,0.60 0.668
0.05 0.333 0.000 0.000,0.00 0.538
0.10 0.333 0.001 0.001,0.00 0.538
0.50 0.333 0.004 0.004,0.00 0.533
100 1.00 0.333 0.008 0.008,0.00 0.527
5.00 0.333 0.038 0.038,0.00 0.481
10.00 0.333 0.073 0.073,0.00 0.429
50.00 0.333 0.277 0.127,0.20 0.185
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Table I.b: C; =@ -1, C, = -1

3 * Ty
Re C /C SPR SLR C-SLR C-SLR
h 1" 72 -
a=0 u a5 a=.25
0.05 0.821 0.954 0.674,0.50 0.752
0.10 0.807 0.914 0.644,0.50 0.717
0.50 0.724 0.728 0.494,0.40 0.550
1 1.00 D.667 0.632 0.418,0.40 D.460
5.00 0.718 0.663 0.347,0.50 0.513
10.00 0.797 0.784 0.447,0.60 0.672
50.00 0.945 0.944 0.800,0.60 0.509
0.05 0.953 0.995 0.717,0.40 0.786
0.10 0.951 0.990 0.714,0.40 0.782
.50 0.934 0.954 0.685,0.40 0.752
10 1.00 0.914 0.914 0.664,0.40 0.717
5.00 0.839 0.728 0.530,0.40 0.558
10.00 0.807 0.638 0.439,0.40 0.481
50.00 0.847 0.825 0.606,0.60 0.739
0.05 0.995 1.000 0.721,0.40 0.790
0.10 0.995 0.999 0.720,0.40 0.790
0.50 0.995 0.995 0.717,0.40 0.786
100 1.00 0.993 0.990 0.714,0.40 0.782
5.00 0.970 0.954 0.718,0.50 0.752
10.00 0.951 0.914 0.670,0.40 0.717
50.00 0.867 0.729 0.534,0.40 0.562

From Tables I it is clear that £-SLR is most efficient for large values
of Re,_ if the flow and the relaxation directions are alligned. In general
cases of coordinate transformations C-SLR with a give better results than

SPR or SLR. Even with a constant, non-optimal o« o 0.25, the results are better
than with SPR or SLR (especially for moderate and large Re, and C, = -1). It
is also noted that for operator (18) the C-SLRneeds anly marglnal%y more comp-
utational effort compared with SLR. For this reason one can expect real, in
terms of computational times, improvement in the efficiency when C-SLR is used.

The smoothing efficiency of both pointwise DGS (P-DGS) and line DGS
(L-DGS) relaxation schemes are cosidered for an equation of the form:

B B
£

(23)

(a3 + ba?)u + (ca. + dBE)V o0

where a,b,c and d are constants.

Local mode analysis has been carried out for both cases.The amplification
factor for the P-DGS scheme is

(aB + cvy) e-l‘(}l + (b8 + dvy) elde
U(31,32) = ETY _ig (24)
o- (aB + cy) e '~ (b + dy) e 2
where g = 2(a2 + b2 + c2 + d2 + ab + cd)
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and B
¥

a+ b
c+ d

For the case of rectangular coordinates, (with a = b=t,c = d = 0), one
gets back the smoothing factor for the Poisson equation. The efficiency of
the P-DGS decreases somewhat when all the coefficients are of the same order.
The smoothing factor is then equal to 0.632. The worse case is when either
a or d are much larger than the other coefficients. In such cases improvement
is obtained if L-DGS is used. The amplification factor of L-DGS (solving for
a line &=constant) is
ag + cy (25)

o - 2(bg + dy)cos%, - (aB + cy) e %

u(81932) =

This L-DGS is most efficient when d is dominant, while L-(y)DGS is most
efficient when a is dominant. Alternating direction of L-DGS relaxation sweeps
can be used in those cases when the coefficients vary largely in the computa-
tional domain.

COMPUTATIONAL RESULTS AND DISCUSSION

At this stage of our work we have tested mainly the efficiency of the
relaxation schemes for the momentum equations. These studies are of interest
for some coordinate transformations which may be used for practicle problems.
Results have also been gbtained for the Navier-Stokes equation solver, but
these results are of preliminary character, since the transfer among the grids
has not been done properly.

In reference 3> a user oriented MG-program for the solution of the Poisson
equation in general two dimensional coordinates, is presented. The relative
efficiency of several relaxation schemes,applied to the Poisson equation in
linearly and exponantially stretched coordinates,have been compared. In that
work [3] it has been concluded that:

i. The rate of convergence of different relaxation operators is not
sensitive to the number of the net points.
ii. As predicted by local mode analysis, simple n- or £-SLR are not effi-

cient on grids where max ]C1/C |>>1 and min |C,/C,|<<1.
iii. The AD-SLR method has a rate o% convergence which Is not sensitive

in variations in C,J/C2

iv. The C-SLR scheme is superior to usual SLR and AD-SLR schemes except,
possibly, when the stretching is very large. In such cases C-AD-SLR
is recomended.

These tests are valid also for the Stokes (Re = 0) momentum equations.
Recently, the tests have been extented to cover the momentum equations for
non-vanishing Reynolds numbers. The following coordinate transformations have
been considered:

1. The identity transformation. & = x,n = y.
2. Mesh refinements near the boundaries of a unit square:
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x = atgh(g -0.5)/e + 0.5
y @ atgh(n -0.5)/e + 0.5
a =1/(2tgh 0.5/¢)

3. Exponentially stretched coordinates (as in reference 3):

where

X = £ + ecE
y:n+ecn
4, Polar coordinates:
X = I cos$
y o r sing
and Tro&t+ 1 and & = n.

5. Polar (stretched) coordinates, as in 4, but with:
ra 1.5 +atgh(s - 0.5)/¢

% = atgh(n - 0.5)/e + 0.5

Known functions,of order one, are chosen and they define a forcing term
in the governing equations in such a way that the exact numerical solution
equals these functions. Only MG-cycling is used (starting always with zero
initial approximation) and the iterations are continued to an accuracy beyond
the truncation errors. In this way the asymptotic convergence factor © is ab-
tained.

In the following tables the asymptotic convergence factor @, the comp-
utational time, T, and the absolute error in the solution, E, are given, for
the following cases:

i. Results for transformation 2 (e o 1/3) are given in Table II.
ii. Results for transformation 3 (c @ 1) are given in Table III.
iii.Results for transformation 4, are given in Table IV.

TABLE II: TRANSFORMATION 2.
1/h 8 16 32
Re o T E o T E o T E
0  0.81,0.12,66-3  0.86,0.43,66-2  0.88,7.67.26-1
spp | 0.79,0.16,56-3  0.86,0.45,6E-2  0.88,1.71,2E-1
10 0.70,0.10,2E-3  0.84,0.48,2E-2  0.88,1.71,1E-1
100 0.25,0.03,9E-5  0.61,0.22,6E-4  0.80,1.50,5E-3
o 0.75,0.13,86-3  0.83,0.56,56-2  0.84,2.20,2t-1
sip ] 0.74,0.14,6E-3  0.82,0.56,56-2  0.84,2.27,2E-1
10  0.63,0.09,3E-3  0.80,0.22,1E-2  0.84,2.24,1E-1
100 0.29,0.04,3E-4  0.57,0.24,3E-4  0.75,2.04,3E-3
0  0.56,0.07,66-4  0.64,0.37,86-4  0.68,1.92,1E-3
c.sir )} 0.56,0.06,3E-3  0.64,0.40,1E-3  0.68,1.92,1E-3
10, 0.34,0.03,5-4  0.59,0.29,16-3  0.64,1.57,9%E-4
100°  0.29,0.03,3E-4  0.57,0.26,3E-4  0.75,1.75,3E-3

The convectivity coefficient in C-SLR is taken to be zero.
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%The convectivity coefficient in C-SLR

TABLE III: TRANSFORMATION 3.
1/h 8 16 32

Re o T E o T E o T E
0 0.56,0.05,4E-3  0.57,0.17,26-3  0.60,0.91,3t-4
SPR 1 0.58,0.07,1E-3  0.59,0.23,2E-3  0.61,0.89,2E-3
10 0.48,0.03,1E-3  0.59,0.19,2E-3  0.66,1.00,1E-3
100  0.26,0.03,96-5  0.26,0.08,56-4  0.50,0.65,86-5
0  0.50,0.05,2E-3  0.60,0.33,5E-4  D.64,1.56,2E-3
SLR 1 0.51,0.05,1E-3  0.60,0.32,1E-3  0.65,1.58,1E-3
10 0.36,0.04,3E-4  0.52,0.21,6E-4  0.60,1.28,3E-4
106  0.31,0.03,2E-4  0.21,0.09,56-4  0.33,0.63,5-5
0  0.41,0.04,1E-3  0.46,0.21,56-4  0.45,0.90,8t-4
cosip 1, 0.53,0.04,1E-3  0.52,0.25,6E-4  0.52,1.33,4E-4
102 0.36,0.03,3E-4  0.52,0.21,6E-4  0.60,1.36,3E-4
100°  0.31,0.04,26-4  0.21,0.11,56-4  0.33,0.68,5E-5

TABLE IV: TRANSFORMATION 4.
1/h 8 16 32

Re e T E e T E o T E
0 0.62,0.06,3t-3  0.64,0.27,1E-3  0.67,1.15,1E-3
SPR 1 0.62,0.06,3E-3  0.63,0.23,5€-3  0.66,1.17,1E-3
10 0.54,0.06,1E-3  0.61,0.21,2E-3  D.64,1.04,1E-3
100  0.24,0.01,3E-3  0.45,0.12,2E-4  0.56,0.77,3E-4
0 0.56,0.06,2t-3  0.63,0.34,66-4  0.68,1.67,1E-3
SLR 1 0.56,0.06,4E-3  0.63,0.32,2E-3  0.68,1.78,8E-4
10 0.54,0.06,2E-3  0.64,0.40,9E-4  0.66,1.67,9E-4
100 0.23,0.02,1E-4  0.40,0.17,1E-4  0.54,1.08,1E-4
0 0.62,0.06,16-3  0.43,0.22,1E-3  0.46,0.93,26-3
coolr ] 0.46,0.04,1E-3  0.46,0.22,2E-3  0.44,1.14,5E-4
10 0.32,0.02,3E-4  0.51,0.25,3E-4  0.54,1.21,7E-4
100°  0.23,0.03,1E-4  0.40,0.19,1E-4  0.54,1.12,1E-4

is taken to be zero.

It is noted from Table II that the SPR and the SLR schemes do not conver-
ge on the finest grid. The C-SLR reults even in this cases in an acceptable
convergence factor. For the C-SLR only three different values of the parameter
a are used in the actual computations, and hence the C-SLR has not been op-
timal. Furthermore, all the results (in Tables II-IV) have been obtained with
the same values of the MG control parameters, which are nearly optimal for
SPR in cartesian coordinates. Improved results for C-SLR are obtained when
other MG control parameters are used. The C-SLR gives a real computational
gain (not only in terms of convergence factor, but also in terms of computa-
tional times) in general, and especially in cases similar to Transformation 2.
For simple cartesian cases, however, SPR results in the shortest computational

times.
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The Navier-Stokes solver has been tested for the computation of the flow
in rectangular-and polar-driven cavities., The code does not include,yet, the
correct transfer of the dependent variables to coarse grids, and hence one can
expect a reduction in the total efficiency. The problem has been solved on
several grids, and the convergence factor is found to be about the same for
both cavities and the different grids. A comparison of these preliminary re-
sults for the (non-optimal) C-SLR and the SPR schemes is given in Table v.

TABLE V: CONVERGENCE FACTORS FOR
DRIVEN CAVITIES.

Re C-SLR SPR
0 0.78 0.76
1 .74 0.84

10 0.72 0.83

As expected the C-SLR gives somewhat better results than the SPR scheme.
However, the results are not satisfactory and effort is being made to improve
the overall effieciency of the Navier-Stokes solver.

! CONCLUDING REMARKS

The progress which has been made in developing a general purpose two
dimensional Navier-Stokes solver is reported here. The computational code
which gives good results, is not considered tobe in its final form and addi-
tional improvement is expected. Further work is being done on the extehsion
of the method to problems which include planes of symmetry where mixed boun-
dary conditions are to be applied.
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APPLICATION OF THE MULTI-GRID METHOD TO CALCULATIONS OF
TRANSONIC POTEWTIAL FLOW ABOUT WING-FUSELAGE COMBINATIONS*

Arvin Shmilovich and D. A. Caughey
Cornell University

ABSTRACT

The Multi-Grid (MG) method has been applied to the calculation of
transonic, potential flowfields about arbitrary, three-dimensional, wing-

body combinations.

Numerical results for iterative convergence rate are in

good agreement with those predicted by a local mode analysis, and show sub-
stantial improvement over conventional relaxation algorithms.

a
a,b,R

A,B,C,D,

Ay,Ay,Ay
ALLAy =

NOMENCLATURE

speed of sound k
normalization parameters for M
the angular coordinate (equa- M,
tion (19)) P
E,H = coefficlents of second P,Q,R
derivatives for the potential ?,Q,ﬁ
equation (28) in the trans-

formed cylindrical coordinates q

= recoupling coefficients Rf,Rt
cell aspect ratios inn and r
directions, relative to the
width of cell in & direction, s
respectively

chord length S
pressure coefficlents

dimension of the problem T
forcing function U, VW
elements of inverse of the
metric tensor U,vV,W

= growth factor

kth Mg level

maximum growth factor on finest Wy

grid per iteration and per MG
cycle, respectively

= mesh spacing

Jacobian of the transformation Wk

and its determinant, respec-
tively
interpolation operator

XaYaZ

[T I I I

(1

ratio of specific heats

Mach number

"cut off" Mach number

wave number

artificial viscosities fluxes
terms used for constructing
the P,Q,R fluxes, respectively
velocity wvector

radial coordinate of fuselage
surface and wing tip,
respectively

coordinate tangent to stream-
line

width of strip in conformally
mapped plane (figure 2b)
recoupling term

velocity components in x,y,Z
coordinates, respectively
contravariant velocity compo-
nents in X,Y,7Z coordinates,
respectively

work spent of the xth MG level
to reduce the residuals to
within the truncation error of
the kth gria

total work (estimated) for ob-
taining a solution to the
level of the truncation error
Cartesian coordinates

* This work has been supported by the Office of Naval Research under

Contra

ct NOOO1L-T77-C-0033.
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X,r,0 = cylindrical coordinates p 8 = weighting coefficients for
X,7,0 = normalized cylindrical coor- @sP2Y  the residual transfer (fig—
dinates ure ka)
X,Y,Z2 = coordinates of the computa- T = truncation error
tional domain = velocity potential
o = modes (equation (29)) w = overrelaxation factor
8 = central difference operator
€ = recoupling parameter Subscripts
u = artif%cial viscosity switching ( Jo = value at upstream infinity
_ functl?n (equation (16)) () = coordinates of the singular
u = averaging operator s 1ine
£,M = coordinates in mapped cylindri-
cal plane (equation (20))
0 = density

I. INTRODUCTION

The MG method has been shown effective in speeding up the convergence
of relaxation solutions of the difference equations arising from discrete
approximations to problems of elliptic type (refs. 1-5). Less attention
has been focussed on non-elliptic problems. The advantages of the method
for problems of mixed type have been demonstrated by South and Brandt (ref.
6), who treated the two-dimensional transonic small disturbance equation for
the non-lifting flow past a parabolic arc airfoil. Substantial deteriora-
tion in performance of the MG method has been encountered when using suc-
cessive line overrelaxation (SLOR) on stretched grids. Jameson (ref. T)
applied the MG method to the two-dimensional potential equation using an
alternative~direction-implicit (ADI) smoothing algorithm, and obtained good
rates of convergence even on highly stretched grids.

The extension of the MG method to three-dimensional calculations seems
attractive, since the process of eliminating the persistent low frequency
components of the error using conventional relaxation techniques is expen-
sive, and the work required for a relaxation sweep on a coarser grid is only
1/8 of that on the preceding grid when the grid spacing is doubled in each
direction. Recent work on an MG code for three-dimensional transonic flow
about axisymmetric inlets has been reported by McCarthy and Reyhner in
reference 8.

An existing three-dimensional transonic potential code designed by
Caughey and Jameson has been modified to accommodate the MG procedure. The
code is called FLO 30, and solves a fully conservative difference approxima-
tion in a boundary-conforming coordinate system.

Experience gained in two-dimensional numerical calculations, both from
the programming and predictability aspects, guided us in carrying out the
work reported herein. An attempt is made to predict the performance of the
accelerated iterative scheme by means of the local mode analysis. By an
a priori knowledge of the rate of convergence, a stopping criterion can be
established.
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In the following sections we describe the finite volume method and the
grid generation procedure (refs. 9-11) to the extent that is needed for
understanding the features associated with the incorporation of the MG tech-
nique into the existing code. The MG procedure is reviewed as well, empha-
sizing the direct implications by those aspects relevant to the problem
under consideration. Theoretical estimates of the MG performance on rather
complicated grids are discussed. Numerical calculations demonstrating the
beneficial effect of the MG technique in accelerating the original relaxa-
tion scheme are presented, and the validity of the theoretical estimates is
confirmed.

II. ANALYSIS
A. TFinite Volume Method

A detailed exposition of the finite volume method devised by Jameson
and Caughey may be found in reference 9.

The continuity equation for steady-inviscid, isentropic flow in Car-
tesian coordinates x.,y.,z reads

+ + =
CLI (o<r>y)y (po,), 0, (1)
where ¢ is the velocity potential. The density p is given by the isentropic

relation

o= (1 + 5L (1

2y 1/k-1
5 )) , (2)

where k is the ratio of specific heats and M, is the free stream Mach num-
ber. The description of the velocity @ = (u,v,w) in terms of a scalar po-
tential

q = V4, (3)

is a consequence of the assumption that the flowfield contains no strong
shocks, so that the flow may be regarded as being irrotational.

The finite volume method does not require knowledge of the global na-
ture of the transformation which generates the grid network, but uses only
local properties of the transformation. We introduce an arbitrary trans-
formation to a new coordinate system X,Y,Z2 and define the Jacobian H

x X *z
Z Z Z

X 'Y Z

with its determinant
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h = det(H).

The contravariant components U,V,W of the velocity can be expressed as

U u ¢X
v Y= 1 v )= (utm) "t by ) > (5)
W w ¢Z

where HTH represents the metric tensor. Under the transformation, the
continuity equation becomes

(phU), + (phV), + (phW), = 0. (6)

X Z

It is convenient to utilize a transformation that locally converts an
arbitrary cell in the physical space into a cube in the computational domain,
such that its center is located at the origin and its vertices are at a dis-

tance unity apart. 7
T 8
"
3 8 3 -
y | i t
I & I
‘ 6 51 | __ _Je

2 / //
Y —~
X 1 2

The simplest such mapping assumes a trilinear variation of the coordinates
and the potential, within each cell. Thus, the shape function for the x
coordinate, say, is
8
= 1 L iy
x = 8 izl x; (= XX (G - YY) (G - 22,), (7)
i denoting the ith yertex of the cell. It can be verified that such formu-
las yleld expressions for the derivatives such as

Xy = %‘(x +Xh—x3+x6-x +X8_X7) (8)

2™ 5

when evaluated at the centers of the mesh cells. Thus, the Jacobian and

the contravariant velocity vector may be readily calculated. For the sake
of simplifying the notation, let us introduce the averaging and differencing
operators

)

h=
-
I

N

+
(fi+l/2,j,k T 1/2,5 %
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T = Tiv1/2,3,k T Ti-1/2,3,k (9)

With this notation, the approximations for the derivatives can be written as

Xx = Hygdx® (10)
with similar expressions for derivatives of y,z,¢ and of derivatives in the
other directions. Taking a second difference of the contravariant fluxes,
the continuity equation is cast in the form

(phU) + u (phv) + uXYGZ(phW) (11)

YZ X ZX Y

This formula can be interpreted as conserving mass fluxes in an auxiliary
cell which overlaps eight primary cells, having vertices at the centers
of the primary cells.

Since the fluxes are calculated by averaging the values of the cell
centers rather than using values evaluated at the face centers of the aux-
iliary cells, this formulation tends to decouple the solution at alternate
points of the grid. In order to compensate for this decoupling we effec-
tively shift the point of evaluation of the fluxes to the center of the
faces of the auxiliary cell by adding one term of their expansions about the
centers of the mesh cells. The added term is of the form

T = —e(uySyy (AprAydugS oy + uydyy (A+A Juysy,

1
+ - = +A +
uySyx(AgrAyduySyy = 5 Syyp (Agthy Ay )83y )0 (12)
where A _ = ph(gll - U2/a2)_and similar formulas hold for JA_. Here a is
the spe€d of sound. The gld are the elements of the inverse of the metric
tensor, and 0 < ¢ < 1/2. 1In practice € = 1/2 is generally used, repre-
senting the strongest recoupling.

In order to properly reflect the correct domain of dependence in super-
sonic regions of the flowfield, it is necessary to introduce an artificial
viscosity. Since the local flow direction is not known in advance, and we
want the directional bias to be added in the streamwise direction, we make
use of Jameson's rotated scheme (ref. 12). Consider the potential equation
in quasilinear form written in coordinates locally aligned with the velocity
vector

2 2(v2 — 6 )

(2 Ss

- %oy + =0, (13)
where s is a coordinate tangent to the streamline. The upwinding of the ¢
term can be accomplished by explicitly adding an appropriate artificial
viscosity to the central difference approximation. The addition of such a
term in divergence form can be shown to be analogous to the following modi-
fied numerical scheme

(phU+P)X + (phV+Q)Y + (phW+R)Z + T = Q. (1)

105



The added flux P is constructed from

5 =, PR (% 8 8
P=u 2 (U8 + VM Syy + WUU 8,000
by defining
12 if U > 0
- k
Fiaje,gx X0
'Pi+1,j,k ifU<O . (15)

The fluxes Q and R are constructed in an analogous fashion. Here, a switch-
ing function ¥ has been introduced
M2
u = max(0, 1 - —%ﬁ, (16)
q

such that the directional bias is added in regions where the local speed
exceeds the value of some "cut off"” Mach number M.. It has been observed
that the MG technique functions at its best when the upwinding is switched
on even in a region slightly larger than the supersonic pocket. In prac-
tice Mg = ,9 is generally used.

The solution of the nonlinear algebraic equations resulting from the
discretization is accomplished by the formulation of an iterative scheme,
embedding the steady state equation in an artificial time-dependent egua-
tion.

B. Grid Generation

The major difficulty in treating the full potential equation rather
than its small perturbation approximation is to correctly satisfy the
boundary conditions. This can be done easily if the difference equations
are solved in a boundary conforming coordinate system. An essential advan-
tage of the finite volume method is the decoupling of the grid generation
step from the iterative procedure, since only local properties of the
transformation are used. Nevertheless, it is often convenient to generate
the coordinate grid by sequences of conformal and shearing transformations
Tor a variety of practical problems.

Consider the configuration shown in figure 1, consisting of a wing
mounted upon a fuselage of varying cross sectional shape. We assume the
flow is symmetrical about the vertical plane passing through the fuselage
centerline so that only the flow in half space z > 0O need be considered.

Denoting the fuselage surface by Re(x,8), the radial coordinate is
normalized out by defining

r- Rf(x,e)

rT=s—, (17)
r - Rt
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Ry being the radial coordinate of the wing tip. The wing sweep and dihedral
are normalized out by introducing the coordinates:

— X—XS(?)
X = ————=* + log 2

“F)
2(b 7 /B® - (6-2)?) (18)

9 =
where
26§ - ﬂ2
a=—"pg =P
s
2 2 2
R” = (8_-a) (19)

and the I sign is taken depending upon whether 6. is positive or negative.
Here c 7 is the local chord length, and xg(7), 95(?7 represent the loca-
tion of g singular line just inside the leading edge of the wing. The
singular line is then used as a branch point in the conformal mapping

X + 2i6 = log(l - cosh(g+in)) (20)

to "unwrap'" the wing surface. Under this transformation a surface of con-~
stant T that intersects the wing surface, shown in figure 2a, will take
the form depicted in figure 2b. A final shearing transformation

X =
Y
7 =

g
n/S
(E r) (21)

reduces the strip of width S T) to one of constant width, as shown in
figure 2c¢, resulting in a neérly orthogonal mesh 1f the location of the
singular line has been carefully chosen. The computational domain shown
schematically in figure 3 is rendered finite by suitable stretchings in the
X and 72 directions. The X stretching is set up at each spanwise station,
so that the far downstream boundary remains a plane in the physical domain,
even if the wing is tapered and/or swept.

The definition of R f(x, e)and S (g, r) from the input data of the fuse-
lage and wing geometry is achieved by spllne fits. A spline fit in x is
applied for interpolating the coefficients of the Fourier decomposition of
the fuselage cross sections. Spline fits in the spanwise and & directions
are employed to define S(r ?). Having defined Ry and S, we proceed with
calculating the physical cdordinates of the grid points by reversing the
mapping sequence.

C. Boundary Conditions
The treatment of boundary conditions in a boundary conforming coordi-

nate system is quite easily accomplished since the finite difference scheme
is formulated in terms of the contravariant velocity vector (U,V,W). To
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enforce the no flux condition across the solid surfaces (the fuselage and the
wing) the normal component of the velocity vector must be zero. This is
incorporated by reflecting the normal flux contributions for the cells
adjacent to the boundary.

The algorithm is simplified by introducing a reduced velocity potential
representing perturbations from the free stream. This potential is set to
zero on the upstream and lateral far field boundaries. On the far down-
stream boundary, the first derivative in the streamwise direction of the
perturbation potential is set to zero; this is equivalent to setting the
streamwise velocity component to its free stream value. This boundary
condition is a consequence of the fact that the flow becomes fully developed
for downstream.

To account for 1ift, a vortex sheet emanating from the trailing edge
of the wing must be allowed. It is assumed that the trailing vortex sheet
lies along the branch cut (the dashed line in figure 2b), thus convection
and roll-up are ignored. On the two sides of the sheet we require that
mass be conserved. For this purpose it is convenient to introduce dummy
points above the boundary, which are identified in the physical domain with
corresponding interior points on the other side of the cut. To envision
this, imagine rotating the left branch cut (in figure 2b) in the counter-—
clockwise direction by 180°, about the singular line, thus obtaining the
physical plane in figure 2a. For conserving the mass in cells whose cen-
ters lie on the cut we calculate the contribution to the fluxes at the
centers of the dummy mesh cells, from the values of the potential and the
coordinates of the corresponding cells reflected about the origin. Points
on both sides of the cut are treated as interior points by the same itera-
tive algorithm. This procedure can also be used when the cut is a vortex
sheet across which the jump in the potential is determined by the Kutta
condition.

In the original program 1t was required that the normal velocity com-
ponent be continuous across the vortex sheet: Vy = 0. This condition was
applied also on the branch cut outboard of the tip of the wing. (This por-
tion of the cut has no physical meaning.) In the modified code mass is con-
served on points that lie on the vortex sheet inboard of the wing tip, while
Vy = 0 was posed on the outboard part of the cut. This special treatment of
the branch cut provided best results when using the MG algorithm.

D. Multi~Grid Technique and Implementation Aspects

An extensive discussion of the MG technigue by Brandt in reference 5
is very illuminating. In addition, we suggest other relevant references
(refs. 3, L) as background to our rather succinct presentation.

The MG method relies on the fact that relaxation schemes are efficient
in eliminating those components of the error whose wavelengths are com-
parable to the mesh spacing. However, the process of liquidating the lower
frequency modes is characterized by a slow rate of convergence since the
effective signal speed on the fine grid is slow. The basis of the MG method
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is to discretize the problem in a sequence of grids of different mesh
widths, allowing simultaneous treatment of the whole spectrum of error
modes. This greatly speeds up the convergence of the relaxation scheme.
Moreover, solving on coarser grids requires far less computational effort,
since the mesh points are fewer.

We proceed to describe the logical sequence of the MG procedure. De-
note the discretization of the scheme in equation (14) on a hierarchy of
grids Go, Gl, G2,..., cK of varying coarseness, by

¥® = 7, kx=0,1,2,....K , (22)

K designating the finest grid, so that FK = 0. We start the iteration on
the finest grid with the aid of some initial estimate. When slow conver-
gence is sensed, the relaxation process is discontinued on this grid. Ex-
ploiting the smoothness of the tentative solution obtained, we carry out
relaxation on the next coarser grid. While ¢k is an approximate solution on
Gk, it cannot be expected to be a good approximation on Gk'l, because of
differences in the discretization errors of the two grids. The link between
the grid levels is made by using a forcing term which accounts for the
difference between the truncation errors of the two grids. Thus

ge-lk gl (23)

where
k-1 k-1 _k k-1 ( ol )

k-1 . .
and T is the truncation error of the coarse grid relative to the fine
grid,

k-1
T

k-1,_k-1 k k-1 _k k
k ( )

= LI ) - 1LY (25)
k-1 . .

Here I denote interpolation operators Erfm hekf%ne grid to the next

coarsest level. It should be noted that I (F-L %) is the residual left

by ¢k. The operator for the residual interpolation is not necessarily the

same as that for the solution transfer.

k

Having calculated an approximate solution on the coarse grid, an up-
dated solution of the fine grid may be obtained. Simply interpolating ¢k‘l
to the fine grid, however, cannot be done, since this would cause the high
frequency components of the solution to be lost. These components can be
maintained by adding to the recent solution ¢K the contribution of low
frequency components to the correction, namely the difference between the
updated solution on the coarse grid ¢X-1, and its estimate I§‘1¢k. Thus ,
an improved solution on the fine grid is

x _ k. k ,k-1 _k-1k
Pnew ~ ¢ 7 Ik—l(¢ - T o). (26)
k
Note that ¢ needs to be saved. Alternatively, equation (26) can be written
as
S S k .k _k-1k
¢new - Ik—l¢ + (o7 - Ik—lIk )
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and the updated solution can be interpreted as follows: transfer the updated
solution ¢¥ to GE-1 and interpolate it back to the fine grid (I§_11§”1¢ now
contains only low frequency components); subtract the result from ¢k to
form the contribution of high frequency components to the correction.

Error components of arbitrarily low wavenumbers can be diminished by
extending the above sequence onto yet coarser grids.

Calculations have been performed on grids of 6Lx16x16 cells in X,Y,Z
directions, respectively. The grid was coarsened by eliminating every other
mesh point in each direction. Most often a sequence of four grid levels
was employed in the MG process. The set up of the program admits the use
of a fifth level (Lx1x1), one that takes the wing to be infinite.

The equations resulting from the discretization in equation (1k) are
sequentially solved on planes of constant Z (marching from the fuselage
towards the lateral boundary), each of which is swept by successive line
overrelaxation along lines of constant X (XSLOR). Because of the local
nature of relaxation schemes, it is convenient to store in virtual memory
the coordinates and the solution of only the 7 plane being swept and its
two neighboring planes on either side, plus the old solution of the preceding
plane. The coordinates and the solution on the entire domain are stored on
a disk and information is buffered in and out of the virtual memory as
needed, while calculations are being performed. Disk manipulation requires
careful programming for transferring the potential and the weighted residuals
to the next coarser grid, and in interpolating the corrections to the next
finer level. The interpolation of the potential to the next coarser level
(in equations (23) and (26)) is done by 'injection', i.e., values of the
potential from the fine grid are transferred at points corresponding to both
levels. Three fine grid planes contribute to the construction of the volume
average of the residuals (in equation (24)) as sketched in figure Lba. Four
coarse grid planes participate in forming the four point Lagrangian inter-
polation in the 7 direction — see figure Ub. The same interpolation opera-
tor is used within each of these planes to improve the solution at each of
the fine grid points that lie on them (in equation (26)). The buffering of
the potential for interpolating in the Z direction is somewhat complicated
in that solution from the first and third preceding planes must be available.

A fixed strategy using one sweep on each visited grid has been shown to
be effective (ref. 7). The domain is swept once on each grid level until
the coarsest grid is reached. Each level is swept once after coarse grid
corrections are added while backing up to the second finest grid. This com-
pletes a MG cycle. Thus, the work required for one MG cycle for a problem
in d-space dimensions is

1+ 2(;£-+ P S L) <1+

o4 ,2d 7 34 = 541

units, (27)

where 1 unit is the work required for a fine grid sweep (ignoring the over-
head due to transferring and interpolation). TFor a three-dimensional prob-
lem., this amounts to 12/7 work units. The use of a fixed strategy rather
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than an adaptive one simplifies the coding. Also, no switching criteria
whose determination would have required numerous numerical experiments, need
be specified.

The adaptation of the MG procedure calls for an additional storage of
2/(2d—l), which amounts to 2/7 of the storage needed for the solution of the
fine grid. Half of this space is needed for storing the potential of all
levels except the finest, while the other half is needed for the residuals on
these levels.

The need to use the buffering procedure is due to the limited virtual
memory of the computer in use. Since only the potential and the coordinates
of the points corresponding to the grid being relaxed need be retrieved, it
follows that the buffering procedure employed is inefficient on coarse grids.
This procedure was appropriate for the original code. We could have chosen
one of the following three options for the modification of the retrieval
procedure of the coordinates:

-Making use of a special routine that coarsens/refines the grid. This
would have still required the retrieval of the coordinates of the
finest grid when relaxing on any level.

-Utilizing the 'random' access mode for buffering in just the coordin-
ates of the points of the grid under treatment, skipping all the others.
This is a quite expensive operation since the mode consists of a
searching operator in addition to the retrieving operator.

-Taking advantage of the fixed strategy, by constructing a disk file
that contains the stored coordinates of all levels in a preset order.
The arrangement is so made as to coincide with the strategy used. More
specifically, the coordinates of the fine grid are put at the head of
the disk, followed by the coordinates of the coarser grids in sequen-
tial order, down to the coarsest level. The coordinates of every
level are stored twice, because the grid is once relaxed and then
swept for the calculation of the residuals. Next, the coordinates of
the grids are stored in the reverse order, up to the second finest
grid. The finest level need be stored only once, since for the
residual claculation (for transferring to the next coarse level) the
disk can be inexpensively rewound.

Initial estimates indicated that the second option should be more
efficient than the first, and it was coded. Subsequently, the third alterna-
tive has been incorporated into the code, exhibiting an additional thirty
percent reduction in the cost of computation. Adopting this option implies
3/7 storage extension of the space required for storing the fine grid coor-
dinates. This does not cause any problems since here we utilize the disk
storage. The use of a computer of larger storage capacity (either real or
virtual) would allow the coordinates of the fine grid and the potential of
all levels to be stored in memory, eliminating the need for the buffering.

Special attention must be paid to the handling of the boundary condi-
tions when implementing the MG procedure. As formerly described, the incor-

poration of the boundary conditions on solid surfaces and on the vortex
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sheet allows use of the same algorithm as at internal points. This treat-
ment proves adequate for the adaptability of the MG, since it is non-disturb-
ing to the interior smoothness. The Dirichlet boundary condition on the
upstream and lateral boundaries does not affect the smoothness of the solu-
tion at interior points, either. However, difficulty was encountered when
imposing the Neumann condition for the velocity potential on the downstream
boundary (which was done by setting the potential on the boundary plane to
its value on the third plane upstream of the boundary). This difficulty

was overcome by invoking the Neumann condition directly in the following
manner: fictitious cells are introduced next to the downstream boundary;
their velocities in the streamwise direction (at the center of the cells)

are calculated by extrapolation of the velocities at the centers of the cells
of the immediate interior cells and the free stream velocity on the boundary;
the standard algorithm is then applied for calculating the potential on the
downstream boundary. Note the similarity of this approach to that used for
the calculations at points on the solid surfaces and the vortex sheet. The
special operator (for Vy = 0) applied on the cut outboard of the wing tip
requires careful treatment. The residuals at these points must be correctly
scaled in order to make them comparable to the residuals at neighboring

points.

Our recommendation is that for a well-coded MG program the solution at
all points of the computational domain including boundary points is to be
calculated by the standard relaxation algorithm, excluding the points whose
specified conditions are of the Dirichlet type. If special operators need
to be devised on some boundaries, caution is required when implementing MG,
to guarantee smoothness of the solution elsewhere.

E. Predictability

A Jocal mode analysis provides a reliable estimate of the MG perfor-
mance. It is assumed that the correction can be represented by a Fourier
series, and it is of interest to follow the evolution of the amplitude of
one mode. It is further assumed that periodic boundary conditions are
specified. Noting that equation (6) is equivalent to ph/a? times equation
(13), the potential equation in quasilinear form is utilized to construct
the iterative scheme. Under the transformation in equation (20), the
potential equation in cylindrical coordinates reads

Ad + B¢ + C¢ + D¢ + E¢ + H¢ =

EE nn rr En gr nr

=F . (28)
(90, 26,)

the coefficients being functions of a, W, Ug, Ups T and the derivatives

of the transformation. Locally freezing the coefficients about the avail-

able solution (the Fourier analysis being useful only for linear schemes),

the XSLOR scheme yields for the growth factor G (the reduction of the error

amplitude during one iteration)
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where:

w — overrelaxation factor

ay = pih-: i=1,2,3 in g£,n,r

P; — waveé number

h; - mesh spacing
for subsonic regions, with a similar expression for hyperbolic regions. The
growth factor is thus seen to be strongly dependent on the aspect ratios of
the cells: An = An/AE, Ar = Ar/AE.

The assumption of periodic boundary conditions implicit in these
estimates can introduce substantial errors in problems of practical interest.
Therefore one cannot always extract accurate predictions of rates of con-
vergence for conventional relaxation schemes. In particular, the Fourier
analysis is not accurate for low wavenumber modes, since they are affected
by the boundaries of the domain. In contrast, the analysis is most reliasble
for those high wavenumber harmonics which interact at short distances. On
this hinges the reliability of the estimates for MG; consideration need be
given only to harmonics in the range w/2 to m (from the wavelength of four
times the mesh spacing to the smallest discernible wavelength), since the
low frequency components of the error are effectively eliminated by the
relaxation processes performed on the coarser grids in much less work.
Therefore

G = max G(ai;An,Ar,w), /2 <o < (30)
provides an estimate for the rate=pf_go?vergence of the MG algorithm. For
the fixed strategy we have used, G = G79 is the growth factor per work unit.

_Equation (29) is rather complicated for analytical treatment for seek-
ing G. The worst growth factor (for a general relaxation scheme) can be
found by inspecting modes of possible combinations of 0, w/2 and 7 for
extreme values of the aspect ratios. This yields comparatively simple
expressions for G. In figure 5,G is plotted against for extreme values
of A (0 and ») for a specified subsonic uniform stream (the velocity vector
has Very little effect on G), the coordinate r and the overrelaxation factor
w. The choice of r is not important since it is inversely related to A and
it can be absorbed in the definition of A (which is checked for 0 and &
anyway). These results suggest that MG ig capable of significantly acceler-
ating the original code and that regardless of the mesh in use, the upper
bound for the growth factor is approximately 0.78 (G = .82k4).
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Although we did not call attention to it, the derivation presented is
appropriate only for parts of the domain where the grid lines of the mapped
mesh £,n,r coincide more or less with the cylindrical coordinates x,0,r
(simplification of the expressions for the coefficients in equation (28) was
permitted by settinglgxl =1, Eg = 0). It is seen in figure 6 that this
might be a good approximation only in regions downstream of the midchord of
the wing. A more complete analysis reguires further investigation of the
network, such that the shearing transformation (21) is taken into account,
as well as the orientation of the cells and their true aspect ratios. This
can be achieved by resorting to numerical calculations of G by scanning the
entire domain. The growth factor thus obtained (at the far upstream cell,
close to the fuselage) was very close to the G estimated above. (For super-
sonic regions in the vicinity of the wing G is smaller.) The fact that
the G's are virtually the same for this case should not be taken to imply
that the more complete analysis can be overlooked in all cases. Two-dimen-
sional calculations on a parabolic grid revealed that the more complete
estimate was 'slower' (it was equal to the 'rough' estimate raised to the
power of 1/1.4), and insisting on attaining rates of convergence predicted
by a rough analysis, would have been futile.

We remark that the calculation of the aspect ratios of the cells in
two-dimensional meshes is greatly simplified by utilizing the conformal
properties of the transformation (no distortion), so that aspect ratios are
readily calculated from the physical coordinates. This, unfortunately, does
not hold for the three-dimensional networks, and calculations must be
carried out in the transformed space £,n,r. Also, the problem of highly
elongated cells in the two-dimensional grid aforementioned, was alleviated
by 'redistributing' the aspect ratios within the domain (which was most
easily done by introducing a suitable stretching function), resulting in
better rates of convergence — both theoretically and numerically. Such a
cure cannot be prescribed for the three-dimensional networks used, since
the aspect ratios of the cells are already quite uniformly distributed.

Given an estimate for the rate of convergence, it is possible to
estimate the computational effort required to solve the problem to the level
of its truncation errors. Suppose the problem is first solved on the coarse
grid ¢¥-1 to within TK'l (1 designates the truncation error). Assuming
that high frequency errors are not introduced by interpolation to the finest
level, the initial estimate for the cK problem is already reduced to
0 (tK-1). Thus, the work required to reduce them to 0(<K) is

W, = log O(«" /") /10g G. (31)
Likewise, having an initial estimate of O(TK_Q), the work required to solve
the cK-1 problem (for the strategy in use) to the level of K1 is

2 log O(1K~1/7K-2)/(29 10g G), since it has 1/29 as many grid points as the
finest grid. For the second order scheme, t¥/7E-1 « hﬁ/h -1 = 1/22. There-
fore, the computational work for solving the problem to the level of its
truncation errors, is
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neglecting the work on the coarsest grid.

This, of course, should not be taken as a practical terminating cri-
terion of the relaxation process. Even if it does not represent the state
of affairs exactly, it certainly constitutes a good approximation, and
one can chose a stopping criterion depending upon the requirements of
accuracy. The criterion used in practice should be determined by a percep-
tive interpretation of experimental results. The modified program has not
been devised to include a switch for terminating the computing process since
our objective was to check the validity of the estimate in forming the basis
for deriving a stopping criterion.

III. RESULTS

In the following we demonstrate the advantages of the MG procedure.
The geometry tested is the ONERA wing M-6 mid-mounted upon a cylindrical
body of radius of .25 the semispan. The wing has a 30° leading edge sweep,
a taper ratio of .562 and a uniformly tapered cross-section of approximately
10% thickness ratio. A perspective view of the configuration is shown in
figure 7.

Computations were carried out on a mesh of 6Lx16x16 cells in the X,Y,Z
directions, respectively, the crudest grid (corresponding to the fifth MG
level) containing just 4 cells (it is a Lbx1x1 grid). The first set of
results was calculated for a 1ifting configuration with a moderately sized
supersonic zone (containing approximately 2% of the points on the grid used).
The free stream Mach number was .84 and the wing and fuselage were at an
angle of attack of 3.06°. The results show the effect of using different
numbers of grid levels. Figure 8a displays the convergence histories of
the average residuals, and indicates the beneficial effect of MG: while the
convergence rate of the original scheme is .982, MG using a sequence of
four grids yields a rate of .80 (more than 12 times faster than the original
code). Without MG, the situation is aggravated on finer meshes (in fact, it
can be predicted by expansion of G in eguation (29) for low frequencies that
the asymptotic convergence rate will be 1 - 0(h2)), whereas the performance
of MG is independent of the fineness of the mesh. Therefore, the relative
advantage of the MG increases as the mesh gets finer. The superiority of the

115



MG scheme can also be seen in figures 8b and 8c, which show the convergence
histories of the circulation at the root section of the wing and the number
of supersonic points detected in the solution. (In these figures the con-
tinuous lines are drawn by connecting the points for the sake of clarity.)

__ As described in the previous section, the estimated rate of convergence
is G = .82L, while the experimental result is slightly better: .80. That
the theoretical prediction tends to underestimate the performance of MG
algorithms was also reported in reference 3. An MG code can be considered
to be correctly programmed and free of bugs and flaws (which are most common-
ly inflicted by incorrect handling of boundary conditions), as long as the
experimental rate of convergence is bounded by the predicted rate. Also,
these results suggest that the choice of a fixed strategy was adequate.

The rate attained in our calculations bears out Brandt's assertion that one
should not settle for any convergence rate slower than that predicted by a
local mode analysis.

The estimated computational work required for obtaining converged solu-
tions which are at the level of the truncation error is Wk = 9.2 work units
(WU). This follows from equation (32) when inserting the theoretical value
for the rate of convergence. We prefer to use this value for the rate rather
than the convergence rate obtained experimentally, since this yields a more
conservative criterion for stopping the relaxation process (letting ¢ = .80
yields Wk = 8 WU). This is 'safer' since the experimental G may increase
(hopefully still bounded by .82L4) when using different meshes or treating
different configurations.

Surprisingly., the solution obtained by five grid levels converges faster
than the MG that employs Jjust four grids, although the rate of convergence
of the last is marginally higher. The -solutions obtained in both cases are
identical, even though on the fifth grid the no flux condition on the wing
is extended to the region outboard of the wing tip to the lateral boundary.
Referring to figure 6, this region lies between the dashed line representing
the singular line of the conformal map (in equation (20)), and the dashed
line leaving the trailing edge of the wing. It was reported in several pub-
lications that the coarsest possible MG level has a negligible effect in
improving the performance of MG that uses a sequence of levels excluding the
coarsest. To explore the difference between MG employing five grids and MG
that uses four grids, we list the error in the solutions after 9.2 WU as
compared to their converged values (refer to figures 8b, 8¢c):

circulation number of supersonic points
4 grids 2% 2.1%
5 grids 1% 1.6%

It appears that the four-grid MG will require about three more work units to
achieve the value of the circulation obtained by the five-grid MG after 9.2
WU. The relative advantage of the scheme employing all possible coarse
levels decreases as we pose requirements for higher accuracy. For example,
if this were the case, we would have to continue the relaxation process up
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to 15.1 WU for the five-grid MG or 16.4 WU when using just four grids, in
order to guarantee a converged circulation to within 0.07% and to capture
all supersonic points. Note that it is only after 16 iterations that the
original code starts to detect any supersonic points at all.

In figure 9 the streamwise pressure distributions are plotted for the
.3, .6 and .9 semispan stations. Comparison is made between a well converged
solution and the solution obtained by the four level MG after 8.7 WU. Notice
the typical pattern of the leading edge shock and the trailing edge shock
(which is smeared out because of the poor resolution on the aft portion of
the wing caused by the parabolic nature of the mapping) that merge as we
proceed outboard. The differences in the pressures are rather small and
are limited to the region between the shocks. The discrepancies seem to be
larger as we approach the tip. After 8.7 WU the 1ift, drag and moment
coefficients of the wing were converged to within 2.6%, 5.0% and 2.5%,
respectively. A fifth coarse level could probably provide a better converged
solution.

Next, we consider a uniform free stream at a Mach number of .923 and
zero angle of attack, resulting in a non-lifting flow for this symmetrical
geometry. A well converged solution indicates that the flow velocity is
supersonic at 6.7% of the mesh points. Convergence histories of the average
residuals and the number of supersonic points are displayed in figure 10,
in which comparison is made between the four-grid MG scheme and the relaxa-
tion scheme without the MG. The rates of convergence of both cases are
almost identical to the corresponding rates attained for the l1lifting case.
At the estimated computational effort required for convergence (9.2 WU),

96% of the total number of supersonic points were established. After 16.k4
WU, the number of supersonic points had converged to within .6% of the total
number.

The streamwise pressure distributions are presented in figure 11 for
the .3, .6 and .9 semispan locations. As in the lifting case, we show the
deviation of the pressure distributions achieved by the four-level MG
scheme after 8.7 WU from those of a well converged solution. Differences
are minor in the viecinity of the fuselage and they become more prominent as
we proceed outboard. Unlike in the 1lifting case, the overall drag coeffi-
cient of the wing was well converged at the end of 8.7 WU having an error
of 1.45% vs. 5.0% for the lifting case.

IV. CONCLUSIONS

The MG technique has been incorporated into an existing computer pro-
gram that calculates the transonic potential flow past wing-fuselage com-
binations. The program uses a conventional SLOR/rotated-difference
smoothing algorithm to calculate mixed elliptic-hyperbolic flowfields that
contain discontinuities. The computational effort when solving on a rather
coarse grid (6Lx16x16) is reduced by an order of magnitude for a given
accuracy. The merit of the method becomes more prominent when calculating
on finer meshes which are of engineering interest. The rates of convergence
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of the MG algorithm are in remarkably good agreement with theoretical esti-
mates from a local mode analysis, even on the curved and highly stretched
mesh of the present computations. We stress that it is of great importance
to find the maximum growth factor by such an analysis in the early stages
of developing a MG code. Although the expression for the growth factor may
be quite complicated, it is worthwhile to extract from it as much informa-—
tion as possible so as to be aware of what might be expected from the pro-
gram, and also for systematically optimizing the mesh.

The modified MG program should be subject to further study of other
practical configurations. Also, the MG technique may be utilized for in-
creasing the accuracy in various ways. For example, by sequential refine-
ment which can be employed in regions of the flowfield where high derivatives
of flow properties are likely to occur (as in the vicinity of shocks, at
the leading and trailing edges of the wing and at the wing tip), or, by
extrapolating the truncation errors on coarse grids (which implies the need
for minor changes in the forcing term in equation (23)).

V. REFERENCES

1. Fedorenko, R. P.: The Speed of Convergence of One Iterative Process.
USSR Comp. Math. and Math. Phys., Vol. L, 196k, pp. 227-235.

2. Backvalov, N. S.: On the Convergence of a Relaxation Method with
Natural Constraints on the Elliptic Operator. USSR Comp. Math. and
Math. Phys., Vol. 6, 1966, pp. 101-135.

3. Brandt, Achi: Multi-Level Adaptive Solution to Boundary Value Problems.
Math. Comp., Vol. 31, 1977, pp. 333-391.

4., Brandt, Achi: Multi-Level Adaptive Techniques for PDE's. Math. Soft~
ware III - Proceedings of Symposium,Math. Research Center, University
of Wisconsin, Vol. 39, 1977, pp. 277-318.

5. Brandt, Achi; Dinar, Natan: Multigrid Solutions to Elliptic Flow
Problems. Numerical Methods for PDE's, Proceedings of Symposium,
Math. Research Center, University of Wisconsin, Vol. 42, 1978,
pp. 53-1k49.

6. South, Jerry C.; Brandt, Achi: Application of a Multi-Level Grid Method
to Transonic Flow Calculations. Transonic Flow Problems in Turbo-
machinery, edited by T. C. Adamson and M. F. Platzer, Hemisphere,

Washington, 1977, pp. 180-207.

T. Jameson, Antony: A Multi-Grid Scheme for Transonic Potential Calcula-~
tions on Arbitrary Grids. Proc. of AIAA 4th Comp. Fluid Dynamics
Conference, Williamsburg, VA, July 23-25, 1979, pp. 122-1L6.

8. McCarthy, D. R.; Reyhner, T. A.: A Multi-Grid Code for Three-Dimensional
Transonic Potential Flow About Axisymmetric Inlets at Angle of Attack.

118



10.

11.

12.

Proc. of AIAA 13th Fluid and Plasma Dynamics Conference, ATAA-80-1365,
Snowmass, Colorado, July 1L4-16, 1980.

Jameson, Antony; Caughey, David A.: A Finite-Volume Method for Transonic
Potential Flow Calculations. Proc. of ATAA 3rd Comp. Fluid Dynamics
Conference, Albuquerque, NM, June 27-29, 1977, pp. 35-5k.

Caughey, David A.; Jameson, Antony: Numerical Calculation of Transonic
Potential Flow about Wing-Body Combinations. AIAA Journal, Vol. 17,
Feb. 1979, pp. 175-181.

Caughey, David A.; Jameson, Antony: Progress in Finite-Volume Calcula-
tions for Wing~Fuselage Combinations. AIAA Journal, Vol. 18, Nov.
1980, pp. 1281-1288.

Jameson, Antony: Iterative Sclution of Transonic Flows over Airfoils

and Wings Including Flows at Mach 1. Comm. Pure and Appl. Math.,
Vol. 27, 1974, pp. 283-309.

119



|
! r

6 —
| \ .- 6,(r)

Re(x,8)  \—
| :4 J
4
!
a) PLAN VIEW b) FRONT VIEW
Figure 1. - Wing-fuselage geometry.

120



8=n/2 symmetry plane
(above fuselage)

Wing section -
_’—/’,—_,‘Eﬁl\\_;" X

—/_\_

0=-n/2 symmeiry plane
(below fuselage)

a) Surface of r = constant (0O <1 <I)

"}

— am—. ,Tlll\ - e T 17: m
smme Surace
Upper . Upstream In |n|tLyQwer
Sypmetry Line Symmetry Line
>

3
b) Conformally - mapped plane

1
——a—Profile §

Surface

c) Computational Plane (after shearing),
Showing schematic streamlines _
Figure 2. - Nearly-conformal mapping of r = constant surfaces (r < 1).
121



FUSELAG
CONDITIO

-7 ~ CONDITION

/’//

Figure 3. - Sketch of computational domain.

122



€21

a) RESIDUAL TRANSFER b) SCHEMATIC REPRESENTATION OF PARTICIPATING
COARSE GRID POINTS IN FORMING AN

COARSE IMPROVED SOLUTION AT 1,J,K.
Ieme = 2 P0Biy RES (x +aeax.y 4 B-Ay. 2+yAz)

a,B,y

Figure b. - Schematic representation of residual weighting and correction
interpolation.



0,0

r,0,r

mr/2,0
ww/2,7w/2

mw/2,m

7,0,7/2}/
.6

Ar"m

n/2,0,0 0,0,0 w/2,m/2,0 0,n/2,0
n/2,0,m/2 0,0,7 n/2,7/2,w/2 O,n/2,m/2
G n/2,0,7 0,0,7/2 n/2,7 /2,7 o,n/2,n

>
| 2 4 8 4 16 20
An
All other modes\ Ar =0
1.0
,8; /\
6F r/2,x/2,% /2 /2,7 /2, ™
n/2, %, 7/2 w/2,7,”
al r,v/2,v/2 r,®/2,n
) r,w,7/2 r,w,
{ 11 1 ] i 1 1 —
[ §

Figure 5. - Growth factor for modes of 0, n/2, m ,for A = 0, ,for XSLOR 77
scheme. (Mm = .8,a=0°,r=1,w=1.6)."

124



y

\
\

-~ -

=
I Wing Plone passing
through the
wing tip

x|

Zz

(

Fuselage

Figure 6. - Silhouettes of numerical network.

125



Figure 7. - Perspective view of ONERA wing M-6 mid-mounted upon cylindrical
fuselage.
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A MULTIGRID MESH-EMBEDDING TECHNIQUE
for

Three-Dimensional Transonic Potential Flow Analysis

By: Jeffrey J. Brown

Boeing Commercial Airplane Company

ABSTRACT

A method for obtaining the fine detail of a transonic fliowfield
is presented. The technique employs the multigrid method to embed
very dense meshes in regions of interest. Accurate results are
obtained on meshes of a heretofore unobtainable density with reasonable
computer expenditures. Comparisons of results with data reveal
accurate predictions in the supersonic bubble of a transonic inlet,
an area which is incorrectly predicted by existing techniques.
More accurate results are also obtained with the new method on
a mesh of a density comparable to existing codes and at a lower
cost.
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NOMENCLATURE
English

a

F
G

Superscript
k

Subscript

k

[--

speed of sound
forcing function

grid level identifier
interpolation operator
differential operator
freestream velocity
radial ccordinate

axial coordinate

ratio of specific heats

circumferential coordinate

potential function

grid level

grid level

freestream condition
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INTRODUCTION '

The standard relaxation methods used in large-scale fluid-
dynamics computations are tocal by nature. The current solution
at each grid point is influenced solely by information from neighbor-
ing points. Consequently, the global rate of information transmission
is asymptotically slow and is aggravated the more dense a mesh
becomes. The result of this situation is an inability to economically
predict the fine details of a flowfield (i.e., peak Mach numbers,
shock locations, etc.). Indeed, the computing time required to
obtain the fine details of a flowfield seriously limits the usefulness
of many realistic production codes. This is especially true for
design- applications which are, by nature, iterative processes.
Consequently, methods for increasing the efficiency of the relaxation
process have received much attention. While gains have been
made, success has seldom been dramatic, often relying upon highly
problem-dependent assumptions.

Recently, however, new mathematical techniques, referred
to as multigrid methods, have been proposed by Brandt (references
1 and 2). These methods theoretically offer from one to several
orders of magnitude improvement in execution time and provide
greatly improved accuracy as well. Brandt has demonstrated remarkable
success with two-dimensional elliptic problems of generally academic
interest. The applicabilty of the multigrid method to transonic
fluid dynamics computations (a mixed hyperbolic-elliptic problem)
was demonstrated by McCarthy and Reyhner (reference 3). They
incorporated the multigrid procedure into the Reyhner code for
three-dimensional transonic potential flow around axisymmetric
inlets at angle of attack (reference 4).

The McCarthy-Reyhner code is a finite-difference, non-conserva-
tive, successive-line-over-relaxation (SLOR) scheme which operates
in cylindrical coordinates in the physical domain. It uses a
hierarchy of four mesh densities, the finest of which (level 4)
is roughly twice as dense as the finest practical mesh available
with the Reyhner code. Very accurate results are obtained with
the McCarthy-Reyhner code on level 4 in approximately three minutes
CYBER-175 central processor (CP) time. As a comparison, it has
been estimated that it would require six hours CP time to achieve
similar results with the Reyhner code (modified for level 4).

As dramatic as these results are, experience with the McCarthy-
Reyhner code has indicated that there are regions of a flowfield
(e.g., the highlight region in an engine inlet) where level 4

is not sufficiently fine to accurately determine the details of
the flowfield. It would not be practical, from a computer storage
requirement, to extend the McCarthy-Reyhner code to level 5 (twice
as dense as level 4) to attempt to resolve the fine detail of

the flow.
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The present work describes an investigation of a technique
for embedding very dense meshes in regions of interest. The approach
involves modifying the McCarthy-Reyhner code to embed a series
of dense meshes in the region of an inlet highlight. Global informa-
tion is transmitted to the embedded meshes from the coarser meshes
via the multigrid procedure. Likewise, the fine detail of the
flowfield is conveyed to the coarser meshes during the multigrid
process. Hence, the solution on each grid (embedded and full domain)
is corrected by information transmitted by the multigrid process
from the other grid.

The author gratefully acknowledges the work of Gary E. Shurtleff
of Boeing Computer Services, Inc., who performed the computer coding
in a timely and efficient manner.

MULTIGRID ALGORITHM

A brief description of the general multigrid method is presented
for completeness and to introduce terminology. After the discussion
of the general procedure, the mesh-embedding philosophy is discussed.
Reference 1 should be consulted for a detailed description of the

multigrid method.
The objective is to solve the potential flow equation
L[¢(r.82)] =Fr.82
where L is a differential operator defined as

-2
L) =(a® - $%) der + (32‘ 't—g)?ie + @ - ¢ 9.,

r2

2 %% ¢y -26¢,9, - 24’9?‘%, + (a2 + %?)%’

r2 r

where
-1 2
at= a2 - V5l (974 %8 +42-a2.)
and

Fir,8,2) =0
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The (finite difference) multigrid method replaces equation
(1) with a collection of finite difference equations

“¢* = FX (3)

represents a discretized version of the operator
k

In equation (3), Lk

L, and ¢k and Fk represent scalar fields defined on a grid G
which is one of a hierarchy of grids of varying coarseness.
(¢k is the exact solution to the discretized equation.)

An economical approximate soluton ¢k to equation (3) can
be obtained by interpolation from a coarser grid Gk'l. Grid
Gk'1 is obtained from grid Gk by deleting every other grid line
from grid Gk. On grid Gk'l, the discretized equation is
Lk.1¢k-1 = gk (4)

When the approximate solution ¢k'1 to equation (4) is obtained,
it can be interpolated to grid Gk as follows

¢k = I:_1¢k'1 (5)

k-1

where It-l is an interpolation operator from grid G to grid

Gk. This procedure has been used by several authors (e.g., reference
5) to obtain a solution to equation (3) as a sequence of solutions
k Gk-l Gk-2

step is to ask whether one can exploit the proximity between the
Gk and Gk'1 problems not only in generating a good first approximation
on Gk, but also in the process of improving the first approximation.

This can be done and is the crux of the multigrid philosophy.

on coarser meshes (i.e., G , etc). The next natural

By taking this essential step, the errors on grid Gk can
be smoothed inexpensively and efficiently on grid Gk'l. At any
point in the solution process on grid Gk, one has the approximate
solution to equation (3), ¢k. One can formally define the error,
Wk, on grid Gk as:
o = gk+ ¥* (6)
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where ¢k is the exact solution to equation (3). After several
relaxation sweebs on grid Gk, the error Wk is smooth. Hence,
a good approximation of Wk'l can jnexpensively be computed on
the coarser grid Gk"l. For this purpose, the fine grid equation
LU + W5 - LAg¢ = FLf¢f = (7)
is approximated by the coarse grid equation

Lkt (I:-1¢k+ k-1 )_Lk-1 I:'1¢k = T:' rk (8)

where T4 ' need not be the same as i,

By defining
A A
equation (8) can be rewritten

LTE T TR ke LTI gk = o

The new unknown $k'1 represents, on the coarse grid, the sum
of the basic approximation ¢k and its correction error Wk.

When the approximate solution $k'1 to equation (9) is obtained,
it can be employed to correct the approximation on the fine grid
as follows

k k- k-1 4k
Onew = oo + k-1 (¢k e v ¢0Lo) (10)

When this procedure is extended over several grids (four
in the McCarthy-Reyhner code) it yields accurate solutions in
the equivalent work of only a few sweeps of the finest level.
This is because the global errors are smoothed efficiently and
inexpensively on the coarse mesh.

MESH EMBEDDING

In regions of high gradient, a dense mesh is required to
resolve the fine details of the flowfield. Away from the regions
of high gradient, the dense mesh is not needed. Extending the
dense mesh over the entire domain is actually counterproductive
(particularly without multigrid) because of the extremely slow
rate of convergence on a dense mesh.
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Fine flow detail can be obtained by embedding a dense mesh
in regions of interest. This is easily implemented in a multigrid
procedure by merely redefining the domain of the finest level
to be a subset of the overall computational domain (cf., Figure
1). The computations on the embedded mesh are then restricted
to the embedded domain. The coarser grid then serves a dual purpose
in the multigrid procedure. On the subdomain where the embedded
mesh is not defined, the coarse grid has the role of the finest
grid and the original difference equation (equation 3) is solved
in that region. At the same time, on the subdomain which is coexten-
sive with the embedded mesh, the coarse grid serves for calculating
the coarse-grid correction, equation (10?.

Understanding of this process is facilitated by letting Gk'+1
denote the embedded mesh and by defining Gt+1 as the set of points
of grid Gk where the Gk+1
the points of Gk which are also points of G

difference equations are defined (i.e.,
k+1, cf., Figure 2).
The difference equations on grid Gk are accordingly modified as
follows

“o*=F* (11)
where F=F In G*- g%,
=k . k
and F'= Fr,y in Gpa
Kk { = X +
where Frer = 15, (Fk+1_ LeHT gk )+ s (I:n ¢* 1)

In equation (11), FK may be regarded as the usual 6k right-

k+1

hand side (Fk), corrected to achieve G accuracy in the Gk solution.

Figure 2 illustrates a typical embedded mesh. On the boundaries
of the embedded domain (exclusive of solid boundaries), constant

¢k+1

potential, » boundary conditions are imposed. The values

of ¢k+1 for the constant potential boundary conditions are obtained

by interpolation from the next coarser grid, Gk. )
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RESULTS

The present study employs a hierarchy of five mesh densities.
The axial and radial step sizes in the coarsest mesh, Tevel 1,

need not be uniform. Once the level 1 mesh, Gl, is defined, all
finer meshes, Gk, are obtained by halving the local axial and

radial step sizes from the coarser mesh, Gk'l. The step size

in the @ -direction is held constant for all levels. Levels 1,

2, and 3 extend over the entire computational domain while levels
4 and 5 are embedded meshes. The analyses to date have employed
co-extensive domains for levels 4 and 5. Table I shows the number
of points in each of these five levels for a typical test case.

The current analysis studied the flowfield around the NASA
TM X-2937 1.26 contraction ratio inlet (reference 6) at angle
of attack. The geometry of that inlet is axisymmetric and includes
a high degree of turning in the highlight region of the 1lip.
This turning provides a difficult test case for analysis. Figure
3 illustrates the results of several analyses of the NASA inlet.
This test case Snalyzed a freestream Mach number of 0.13, an angle
of attack of 307, and a throat Mach number of 0.48. Figure 3
is a plot of surface Mach number verses surface arc length for
the windward 1ip region. The negative arc length depicts the
external surface while the positive arclength corresponds to the
internal surface. A comparison of analytical results to experimental
data is illustrated.

Figure 3a illustrates the results of an analysis of the test
case with the Reyhner code. The key discrepancy in the Reyhner
code results is the underprediction of the Mach numbers in the
supersonic bubble. It is suspected that thijs underprediction
is due to either a lack of resolution in the 1ip region (i.e.,
the computational mesh is not adequately dense) or to viscous
effects in the data which the potential flow analysis can not
determine. The mesh in the Reyhner code can not be made finer
for reasons discussed above. Thus, the present study was undertaken
to address this question.

Figures 3b and c illustrate the results of an analysis of
the same test case with the modified McCarthy-Reyhner code. Figure
3b depicts the results with an embedded level 4 mesh. The level
4 mesh is approximately four times as dense as the mesh employed
in the Reyhner code analysis. Examination of Figure 3b reveals
a more nearly accurate prediction of the supersonic Mach numbers.
Figure 3c shows the results with an embedded Tevel 5 mesh (level
4 is embedded as well). The overprediction of the peak Mach number

138



TABLE I

TYPICAL MESH DENSITIES

NUMBER | NUMBER | NUMBER
LEVEL OF 2 OFR OF© | TOTAL
MESH MESH MESH

1 15 15 5 1125
2 29 29 5 4205
3 57 57 5 16245
4 TOTAL 113 113 5 63845
4 EMBEDDED| 41 70 5 14350
5 TOTAL 225 225 5 253125
5 EMBEDDED| 81 139 5 56295
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can be explained by considering the fiow in that region as a simple
Prandt1-Meyer expansion. Apparently, either viscous interaction
tends to mitigate this expansion causing the lower peak Mach number
in the data or the high peak Mach number was not measured. This
phenomenon is not resolved by the coarse meshes of Figures 3a

and 3b. An excellent prediction of the remaining supersonic Mach
numbers is obtained by the level 5 results.

Figure 3 shows that the external surface Mach numbers are
underpredicted by all three analyses. The magnitude of the error
is constant, thus the underprediction is apparently due to viscous
effects (the mesh refinements have not yielded any improvement).

Figure 4 shows the results of an analysis with level 4 extended
over the entire domain compared to an embedded level 4 analysis.
The case analyzed was the NASA 1.26 contraction ratio inlet at
the same flight Mach number and angle of attack but with a throat
Mach number of 0.64. It is apparent from this comparison that
an analysis on level 4 does not need to be extended over the entire
domain. Restricting attention to an embedded domain will yield
comparable accuracy in, for this test case, one-half the CP time.

Table II illustrates a comparison of the computational work
and Tevel of accuracy obtained using various mesh densities for
a typical analysis. The measure of convergence employed in the
present study is A¢, the average change in potential, ¢, from
one sweep to the next. This is used because it is not convenient

to obtain the actual residual, Fk -Lk¢k. This number (Dﬂg can

be misleading when comparing the accuracy obtained on different
meshes. Therefore, the maximum variation in mass flow rate from
the enforced mass flow rate at the compressor face is calculated
and is indicated in Table II for completeness. The mass flow

error across the shock wave is constant for each mesh (0.6 percent).
The work unit quoted in Table II is an amount of computational

work equal to one relaxation sweep over a full level 4. An interest-
ing observation from Table II can be made in regard to the embedded
level 4 solution. That solution was obtained in one-half the
computational work of the Reyhner code solution (i.e., the version
of the code without multigrid). When one considers the increased
accuracy of the embedded level 4 solution along with the decrease

in computational effort one begins to appreciate the power of

the multigrid code.
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TABLE II COMPUTATIONAL WORK
AND ACCURACY COMPARISONS

McCARTHY | MODIFIED
REVHNER REYHNER | . CODE ~
CODE EMBEDDED
CODE LEVEL >3
L Number of
Sweeps 150 13 13
E
Work
v 39 10
Units 10
E CPU Seconds
n
L (Cyber 175) 138 50 50
3 Am 2.6% 1.6% 1.6%
—
L Number of
Sweeps 14 14
E
Work
v Units 3 19
E
CPU Seconds 180 o8
L (Cyber 175)
4 Am 1.07% 1.24%
ber of
il 6
E
Work
v Units 42
E
CPU Seconds 235
L (Cyber 175)
5 A m 0.97%
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CONCLUSIONS

A method has been developed for utilizing the multigrid heirarchy
of meshes to embed very dense meshes in regions of high gradient. The
new method provides accurate, economical solutions to real problems of
engineering interest. The embedded dense meshes yield the inviscid fine
detail of the flowfield. Without multigrid, the fine detail was not
economically obtainable.
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A MULTIGRID ALGORITHM FOR STEADY TRANSONIC POTENTTIAL FLOWS
AROUND AEROFOILS USING NEWTON ITERATION*

J.W. Boerstoel
National Aerospace Laboratory NLR

Amsterdam, The
Abstract

The application of multigrid
relaxation to transonic potential-flow
calculation was investigated. Fully
conservative potential flows around
aerofoils were taken as test problems.
The solution algorithm was based on
Newton iteration. In each Newton itera-
tion step, multigrid relaxation was
used to calculate correction potentials.
It was found that the iteration to the
circulation has to be kept outside the
multigrid algorithm. In order to obtain
meaningful norms of residuals (to be
used in termination tests of loops),
difference formulas with asymptotic
scaling were introduced. Nonlinear
instability problems were solved by
upwind differencing using mass-flux-
vector splitting instead of artificial
viscosity or artificial density. It was
also found that the multigrid method
cannot efficiently update shock posi-
tions due to the (mainly) linear char-
acter of individual multigrid relaxa-
tion cycles. For subsonic flows, the
algorithm is quite efficient. For
transonic flows, the algorithm was
found rcbust; its efficiency should be
increased by improving the iteration
on the shock positions; this is a
highly nonlinear process.

* The study was performed under con-
tract for the Netherlands Agency for
Aerospace Programs (NIVR), contract
number 1853.

Netherlands

1. Introduction

Most computer codes for the cal-
culation of transonic potential flows
are based on the solution of a large
finite-difference eguation system by
some nonlinear relaxation algorithm.
The development of. these algorithms
started about a decade ago with work
of Murman and Cole, who applied upwind
differencing in supersonic zones to
generate directional bias (Ref. 1).
The most important improvements since
then were the introduction of the con-
cept of full discrete conservation
(Murman, Ref. 2), the extension to the
full nonlinear potential-flow equation
(Jameson, Ref. 3), and the application
of results of tensor theory to allow
non-orthogonal curvilinear grids, so
that grids can be easily aligned with
complex flow, boundaries (Jameson e.a.,
Ref. b4, Caughey e.a., Ref. 5). An
impression of the state-of-art may be
obtained from references 6 and T.

During the last few years,
numerical analysts have proposed
various new fast-solver algorithms
that perhaps may also be used to
solve finite-difference equations for
transonic potential flow more effi-
ciently than nonlinear relaxation
algorithms. The most interesting fast
solvers are CR/FFT (cyclic reduction/
fast Fourier transformation), AF
(approximate factorization), ILU
(incomplete lower-upper decomposition),
and MGR (multigrid relaxatidn). For
transonic potential-flow calculations,
fast solvers of wide applicability are
of particular interest because of the
complexity of the potential-flow
equation (nonlinear, of elliptic-

hyperbolic type, singular at shocks
and sonic liness.
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The application of multigrid linear version was applied because

methods to transonic potential-flow the convergence analysis is consider-
calculations was investigated by ably simpler.
several authors (Fuchs, Refs 8,9; South Two-dimensional full potential

and Brandt, Ref. 10; Jameson, Ref. 11; flow around an arbitrary given aero-
McCarthy e.a. Ref. 12; Arlinger, Ref. foil was used as a test problem. The
13). Interesting results were obtained flow equations were discretized in a
by Fuchs for two-dimensional transonic fu_']_ly conserva'tive manner on an

small-perturbation flow around non- approximately orthogonal grid of O-
lifting symmetrical aerofoils. Some type. The grid is aligned along the
combinations of the various finite- aerofoil.

difference equation systems and various The nonlinear finite-difference

versions of multigrid relaxation algo- equations are presented in section 2,
rithms tested by Fuchs turned out to be the main structure of the solution
very efficient. The other authors also algorithm in section 3, the multigrid
reported promising results. Approximate process in section 4, and the relaxa-
factorization techniques have also beention technique applied in the multi-
applied with success (Holst, Ref. 14; grid process in section 6. Results of
Baker, Ref. 15; Catherall, Ref. 16). Asnumerical experiments and a concluding
a function of the number of grid points discussion form the last two sections.
approximate factorization is theoreti- Some stability considerations are pre-
cally asymptotically slower than multi-sented in section 5.
grid relaxation, however. ILU methods
have not yet been applied to transonic 2. Finite-difference eguations
problems. The application of CR/FFT to
trangsonic flow problems turned cut to The finite-difference equations
be not gquite successful. to be solved are defined on a grid of
O-type. Such a grid may be generated
The present study concerns the by a mapping from an equidistant grid
design of a fast-solver algorithm for in a computational (&,n)-plane to the
transonic potential-flow calculations physical (x,y)-plane. The mapping used
using Newton iteration and multigrid here consists of a sequence of a few
relaxation. simple transformations, illustrated in
From preliminary investigations i1t was figure 1: a conformal Karman-Trefftz
known that Newton iteration (exact or transformation, followed by simple
approximate) was promising (Boerstoel, correction transformations. A Karman-
Ref. 17; Fuchs, Refs 8,9; Piers and Trefftz aerofoil is (crudely) fitted
Slooff, Ref. 18). The Newton iteration to the aerofoil such that the aerofoil

technique was also proposed by becomes a smooth near-circle under the
Hackbusch to solve other nonlinear corresponding Karman-Trefftz transfor-
problems than transonic problems mation. The trailing-edge corner is

(Ref. 19). thereby removed. The subsegquent trans-

Within each Newton iteration step,formations map the aerofoil into a
a linear correction problem has to be circle (stretching,and shearing in

solved. This is done with multigrid radial direction), and introduce a
relaxation. stretching far from the aerofoil in a
Various multigrid relaxation direction approximately normal to the

algorithms exist (Brandt, Refs 20,21): streamlines, with a stretch factor

for example, a nonlinear version known (1—Mi)1 2, Near the trailing edge, the
as the FAS (full approximation storage)total mapping was designed to be con-
method, and a linear version known as formal, to first order in (n-nu);

the cycle C method. In this study, the
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this permits easy implementation of
various forms of the Kutta condition.

An example of a grid is presented
in figure 3. As shown, the grid is
truncated far from the aerofoil (4 to
10 chords).

Because, in fast-solver algo-
rithms, the corrections to given
approximate solutions are in general
much greater than the {usually small
and smooth) corrections in nonlinear
relaxation algorithms, fast-solver
algorithms are considerably more prone
to nonlinear instability. In the ini-
tial stages of the study it was found
that various forms of artificial-
viscosity terms gave often rise to
expansion shocks, in particular on
coarser grids, and also at tops of
supersonic zones. A nonlinear finite-
difference equation system with excel-
lent stability properties was obtained
by introducing directional bias with
mass-flux-vector splitting; this is a
generalization to full potential flow
of a concept applied by Engquist and
Osher to stabilize the fully-conserva-
tive difference equations for transonic
small-perturbation flow (Ref. 22).
Numerical experiments revealed, that it
was also necessary to compute the
density at cell-face centres instead of
at cell corners. (Computation of the
density at cell corners is usual
practice in most computer codes.)

The finite-difference equation
for the mass conservation equation of
each cell (i,)) on the computational
plane has the form (.T means transpo-
sition) (see Fig. L)

v,
1,3
where V is a second-order accurate
discretization of the gradient opera-
tor (3/%£,3/3n), see below for details.
Fd is a discrete mass-flux vector with

three components (hence, the term
mass-flux-vector splitting):

F 0 (1)

2

15

d

F@ = F - F* + pOF

(2)

H

with F the usual mass-flux vector:

F=phU . (3)
U=23GgVvo , (L)
p = {1—%(Y—1)Mi(1—q2)}1/(y'1) ,

a2= (vo)T ¢ v (5,6)

G is the contravariant metric tensor,
and h the determinant of the mapping
(g,m) » (x,y). Velocities g and den-
sities p have been scaled by their
free-stream values. The mass-flux
vector F& is nonzero in supersonic
zones:

< 1 then 0 else

(1)
{{pa - p*g*)/q} n (U UT/qQ) Vo o,

where M is the local Mach number, p*
and g* the sonic values of the density
and the speed, and U UT is the 2%2
matrix defined by the exterior pro-
duct of U with itself. The mass-flux
vector F&r is equal to F& at the
centre of the upstream cell-face. (Fd
will be computed at centres of cell
faces).

The components of the mass-flux
vectors F and F® are computed at the
centres of cell faces with second-
order accurate central-difference and
central-averaging formulas applied to
. The Mach number test 1nvolved in
the calculation of F& is also made at
the cell-face centres; this implies
that the Mach number test for F&T is
made at the upstream cell-face centre;
it will be seen below that this has
interesting consequences for the con-
struction of sonic and shock opera-
tors. The metric data are assumed to
be known at the cell-face centres.

Physical and mathematical pro-
perties of the mass~flux vectors and
their discrete divergences are readily
obtained b% decomposing the matrices
G and (U UY/q2) using the orthonormal
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matrix
© /g = /g x X
vV = X Y = S n (8)
my/q ®./q Yo Vg
v VT = unit matrix .
and the relation G = H-' =T | H the

Jacobian of the mapping from the compu-
tational space to the physical space.
In (8), (s,n) are the natural coordi-
nates of the flow. In particular,

F, F&, and F-F® depend on mass-flux
vectors in natural coordinates as

follows if M > 1
-1 T
F =hH VI PO, ap wn] s
_ T
F& = n H v [p 0, - p¥*q*, 0 1] R
-1 T
F-FP=n B VI o*a* 0]

(2-11)

These expressions show that, in super-
sonic zones and in natural coordinates,
the streamline component of F-F& has a
fixed sonic magnitude; the other com-
ponent is zero because @, = 0

Because the scalar pg = p @, as a
function of the speed q = g, has a
maximum at the sonic speed g*, the
vector F& measures the mass-flux

excess in comparison to the sonic maxi-
mum mass flux p*g*. Although F-F2 is a
vector of fixed magnitude in natural
coordinates, its divergence 1is gener-
ally nonzero (@, is not identically
zero); this divergence is a measure of
the convergence of the streamlines.

It may be shown that, in smooth
parts of supersonic zones, the implicit
artificial viscosity generated by the
divergence of F& - F8T ig closely
related to that of Jameson (Ref. 3),
and to the viscosity encountered in
the artificial-density used by Eberle
(Ref. 25), Hafez e.a. (Ref. 2A), and
Holst (Ref. 1L4). At sonic lines and at
shocks, the relation between the
vector-split-concept and the artifi-
cial~viscosity and artificial-density
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concepts is lost, however.

At sonic lines, expansion shocks
cannot occur because the mass-flux
vector F9 is forced to have a sonic

magnitude:
_ T
Manu'ly [o*g*, p © ] i
n
ar (12)
e £ 0 , =0

at the first supersonic cell-face
centre after the sonic line. Approxi-
mately normal shocks are allowed to
become very steep, mainly because, at
the first subsonic cell-face centre
after the sonic line in the shock,
the mass-flux vector FA has the spe-
cial value

¥

Far £ 0 Mr >

It may be shown that the finite-
difference equations for transonic
small-perturbation flow proposed by
Engquist and Osher have simular pro-
perties. They showed that their dif-
ference formulas have stable and
unique solutions (Ref. 23). The con-
cept of mass-flux-vector splitting
presented here is a formal generali-
zation to the full nonlinear flow
equation of their splitting.

A L o h U

-] L]

(13)

because

The precise definition of the
discrete gradient operators V in
(1,4,7) differs from the usual ones
because asymptotic scaling is applied.
This has been done to obtain useful
norms of residuals to be used in ter-
mination tests of lteration loops.
Because of the grid stretching and
the singular behaviour of the poten-
tial near free-stream infinity, the
residuals of sufficiently accurate
approximate solutions need not be
uniformly small over the entire grid,
but are allowed to have a certain
growth rate when tending to free-
stream infinity. Efficient residual

norms should account for the per-
mitted growth rate. On O-type grids,



the permitted growth rate may be ana-
lyzed if finite-difference formulas
with asymptotic scaling are applied.

Asymptotic scaling naturally
emerges on O-type grids, if we require
that the velocity must be approximated
uniformly to 0(h®)2 (h™ mesh size) for
any sufficient smooth potential o
having the expected asymptotic behav-
iour when tending to infinity (n + 0).
This requirement leads to an analysis
of the relation between approximation
errors of difference formulas and the
asymptotic behaviour for n + 0 of all
kinds of functions of (E,n), such as
potentials, metric data, mass-flux
vectors, residues, etc.

The main steps of the analysis are
the following. The mapping from the
computational to the physical plane is

defined such that
X = na cos 2w +
» (13)
By =n sin 2mg + ...,
-1 —
@=mn  c_(g) +Td/flg)+....,(15)

i
|

= (€—€2> / (Eu—52> + constant

/2 (16-17)

B = (1 - M2)
Using these formulas, it may be shown
that the metric constants in the

expression (6) for q?,

T
a2 = (V@)” G Yo

11 12 22
=g Wtr2eg 0 0 *g ©?
(18)

and the derivatives of the potential
have asymptotic magnitudes given by

11 22

g'l= 0(n2) , &%= 0(nd) , &°°= o(n*),

_ -1 _ -2
®p = o(n~ "), ©, o{n 7).

It follows that g may be approximated
with an absolute accuracy of O(h®)2,

indeed, if ¢ and @, are approximated
by difference formulas with an abso-
lute accuracy of the order n_ l{n®)2
and n”2(h®)2, respectively.

In general, difference formulas
for derivatives f, of functions
f(£,n) having an asymptotic power
series of the form

£(g,n) = c (&) n? o+

+ c1(£) n_q+1 + ...

may be derived from the identity

(g+1) n% £} Sl
(21)

by applying the usual central-differ-
ence formulas to the terms (nd*! f)
and (n9 ), because these terms are
of unit order in n. The resulting
difference formulas are a mixture of
numerical and analytical differentia-
tion in n, and have an absolute accu-
racy of order n~—9-1(nm)2,

These general considerations
were used to define the discrete
gradient operators V as follows.
Indicate the usual averaging and
first-order difference operators by
Mgs Hps Sps 8, with

_ g+
£y = {(n f)n -

He(i,3) f=(f .+ .4 ) /2,

i+§ sd 1-3 5
8 ¢ «y £ = (£, 1 .~ T, ) "
£(i,3) ( i+3,J 1—%,3) /B
(22)
then (see figure 5 for the stencils)
T .4 d » d
V. . F'= {8 TF. + S P+
i3 [ £ Ty { . (n -
d -2
-2nu (n F2) }n ]i,j >
. .p= I8 S 2 { +
Vigd,5 @ [ £ @ { Hy 6 (n ng ©)
- -2 1T
2nup @37t I s )
(23-24)
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-1

ZI [ug 8¢ L T (n @)1},

2 _ -29T
{6n (n%p) - 2n o (n@)} n ]i,j+%

(25)

Asymptotic scaling is also applied in
the retarded mass-flux vectors Far,
when retardation in n-~direction has to
ocecur:

ar _ a, 2 2
PR = [FY .. 2 2
i,j+3 [ 1(i,j+3-a) (nJ+%/nJ+%—a)’
a T
F % / T]j_,_%_a)] . (26)

2(1,5+1-a) My

The Neumann boundary condition on
the aerofoil surface is zero mass flux

through the aerofoil surface. This con-

dition has been implemented in two
linearly independent ways in the
finite-difference equation system:

e The mass-conservation equation (1,23)

of each cell (i,J-1) adjacent to the

aerofoil image is modified by requiring

that no mass enters the cell through
the cell face (i,J-3) on the aerofoil
image:

d o . (27)

¥, . =
2(1aJ'%)

e The potential values ®; inside the
aerofolil are coupled to the potential
values in the flow field by applying
the boundary condition at each cell-
face centre (i,J-2) on the aerofoil in
the form

Foli,g-p =0
F& and FaT are thus not used in this
boundary condition, so that a second

row of potential values inside the
aerofoil is not needed.

The Dirichlet boundary condition
is applied on a large closed curve
n = ny around the aerofoil (in calcu-
lations, 4 to 10 chords from the aero-
foil):

(28)

. = X. - (r/27%) arctan (Ry/x).
wl’% 1,3 (r/2m) (By/ )1,%,
(29)
X = xcoso +ysina, ,
y =-xsinoa_+ycosa_ , (30)
with o the free-stream incidence.

Because the potential values are
given on the free-stream boundary

j = 2 instead of at the grid points
(i,1), one-sided second-order accurate
difference formulas have been used at
the free-stream boundary instead of
the central formulas (24,25).

The circulation T is determined
by the Kutta condition. Because near
the trailing edge the grid is approx-
imately conformal, the Kutta condi-
tion may be given the form (@ )t =0
if the flow is subsonic at thé trail-
ing edge. (wg)te is approximated by a
central-difféerence formula.

3. Solution algorithm

The nonlinear finite-difference
equation system is solved by a fast-
solver algorithm based on the com-~
bined use of Newton iteration and
multigrid relaxation. The main struc-
ture of this algorithm is presented
in this section.

During the study it was found
that due attention has to be paid to
a few new problems.

e Circulation changes give in general
rise to an increase of norms of
residuals. In order to prevent limit
cyecling or divergence of nested
iteration processes (here, Newton
iteration and multigrid relaxation),
the increase must be allowed for in
termination criteria of iteration
loops.

e The solution algorithm has to
iterate on different types of non-
linearity: a short-wavelength non-
linearity at shocks with a length
scale of the order of one mesh of the
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finest grid in a current grid sequence,
and a mild nonlinearity elsewhere with
length scales of geometric properties
of the aerofoil such as the chord or
the leading-edge radius. The short-
wavelength nonlinearity is encountered
during shock-position improvements.
Both types of nonlinearity have to be
processed after each circulation im-
provement , because circulation changes
give rise to changes far from the aero-
foil (almost linear, length-scale the
chord), at the leading edge (mildly
nonlinear, length scale l.e. radius),
and at shocks {strongly nonlinear,
length scale the mesh of the finest
grid).

It was also found that multigrid
processes do not efficiently improve
shock positions on fine grids if the
shocks have to move over several (say
five) meshes of such grids. (Such move-
ments may be easily required, by circu-
lation updates, for example.) This may
be explained as follows. Multigrid
relaxation is based on the assumption
that a correctiocn toc an approximate
solution may be decomposed into a sum
of short-wavelength and long-wavelength
components; the short-wavelength com-
ponents are {efficiently) computed on
the finest grid of a grid sequence, and
the long-wavelength components are com-
puted on coarser grids where less grid

points are involved in the calculations.

Such a linear decomposition of a cor-
rection grid function in short- and
long-wavelength components has sense in
linear problems, and also in lineariza-
tions of nonlinear problems. However,
linearizations of the shock operators
can at best estimate shock movements
over one mesh of the finest grid.

In fast-solver algorithms, the shock
should be able to move over several
meshes, however. The basic assumption
of linearity of the multigrid relaxa-
tion process conflicts thus with the
nonlinearity of the shock-movement
process. {This is also true for the

nonlinear FAS-multigrid relaxation
method proposed by Brandt (Ref. 21),

because Brandt's construction of the
FAS method makes use of the linearity
of the correction problem on the
finest grid.) Other details concern-
ing multigrid relaxation and shock
position updates are presented in
figure 6.

An iteration process in which
these general considerations have
been taken into account may be chosen
to consist of an outer Newton itera~
tion on the circulation TI', and two
inner iteration procedures, one for
the calculation of corrections out-
side shocks (whereby multigrid relaxa-
tion is applied), and one for the
update of shock positions. This com-
bination of iteration procedures may be
represented by the following algorithm.

initialise @, Fa;
until Fa accurate enough do

begin until flow equations at fixed

' are solved do
begin improve @ at fixed Ta by one
multigrid cycle;
improve shock positions with
partial relaxation sweeps;
end of iteration at fixed r.s
compute error in Kutta condition;
improve circulation estimate r.s

end of outer Newton iteration on T.

The outer Newton iteration on the
circulation is based on a split of the
finite-difference equation system of
the form

L{p(r)} =@ , (31)

{aw(F)/GE}te =0 > (32)
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where the last equation is the Kutta
condition, and the first one represents
all other equations. The solutions
@(T,) of the nonlinear system (31)
alone define a (nonlinear) relation
between Ty and {3@(Ty)/3E}te , see
figure 7 for an illustration. The Kutta
condition (32) means that we are inter-
ested in the value T on the horizontal
axis. We may 1lterate to this value as
shown in the figure. The slopes needed
in this Newton iteration process are
estimated by numerical differentiation.
On a fixed grid, usually three to four
steps are sufficient to fix the 1ift
coefficient to about three significant
figures.

In each step of the outer Newton
iteration process to I'; the nonlinear
equation system (31) has to be solved
for a fixed estimate Ty of the desired
value of the circulation. This i1s done
iteratively. In each lteration step,
the solution is first improved outside
shock layers by one multigrid-relaxa-
tion cycle (see section U4), whereby
shock positions do hardly vary. This
multigrid-relaxation cycle is followed
by an update of shock positions with
nonlinear relaxation sweeps on the
finest grid in (small) subdomains
around shocks (partial relaxation
sweeps). In the first partial-relaxa-
tion sweep, the subdomains to be
relaxed cover only shock cells. In each
subsequent sweep, the subdomains are
enlarged by one row of cells upstrean,
above, below and downstream of the sub-
domain relaxed in the previous sweep.
This enlargement isg necessary, because
partial relaxation on fixed subdomains
may lead to divergence due to increase
of residuals at the boundaries of the
subdomain.

The termination of the iteration
to a solution of (31): L{p(ry)} = q for
a fixed estimate of I'y of the desired
circulation is based on a test com-
bining two criteria. When the circula-
tion is not yet accurate enough, the
iteration terminates as soon as the

value of {mg}te is so accurate that it
may be reliably used to lmprove the
circulation to a better estimate.
However, when the circulation is
accurate enough, the iteration to a
solution is terminated when a norm of
the residuals of the mass-conservation
equations of the cells has become
small enough. This test strategy
drives the circulation as fast as
possible to its final wvalue.

A suitable norm of the residuals
was found to be the maximum norm

(see (1))

T d nm
R = max {(n. 2ly, . F|}n
max i j ( J/nu> | 1,3 I
(33)
. . T a
The scaling of the residuals V; . F

by n¢ reflects, that the residudls of
sufficiently accurate approximate
solutions are of order n=2 0(nM™)2;
hence, they are allowed to grow with
n + 0. The scaling by the mesh size
h™® makes the norm nondimensional
(hence, mesh-size independent). A
maximum norm is preferred over a rms-
norm, because an rms-norm does not
show that, in certain stages of the
iteration process, large residuals
may occur in very small regions. For
example, when iterating at fixed T,
after each multigrid-relaxation steep,
the residuals of shock cells are
usually at least an order of magnitude
larger than elsewhere in the flow due
to velocity overshoots (or under-
shoots) as sketched in figure 6. Rms-~
norms (or average absolute-value
norms) do not efficiently measure
large residuals in such small regions,
and cannot be safely used in termina-
tion tests of loops.

In subsonic-flow calculations,
the partial-relaxation sweeps are
suppressed.

The Newton iteration process on
a grid is started with an initial
approximation of the potential that
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is computed by solving the nonlinear
finite-difference equation system
(31,32) on a coarser grid (mesh size
doubled). This is repeated on a
sequence of three to four grids. On the
coarsest grid of this sequence, the
entire calculation is started with a
uniform-flow potential having no circu-
lation.

4. Multigrid-relaxation cycles

The multigrid relaxation cycles
used in this study have a general
structure closely resembling the cycle
C algorithm of Brandt (Ref. 21). Its
general structure is presented in
figure 8a. It may be seen that the
cycle starts with a linearization of
the flow equations on the finest grid
so that the whole cycle effectively
represents one (approximate) Newton
iteration step.

A few detalls of the implementa-
tion of this multigrid relaxation
cycle are of special interest.

e The restriction operations are
applied to the complete linearized con-
servation equations instead of resi-
duals. This is done in such a way that
the equation system on the coarser
grids may be interpreted as approxima-
tions to the mass conservation equa-
tions on the finest grid.

e Certain stability properties of the
linearized flow equations are trans-
ferred in a controlled way to the
coarser-grid equations. See section 5
for more details.

As shown in figure 8a, each multi-
grid relaxation cycle starts with a
linearization of the nonlinear flow-
equation system (31) on the finest
grid around a given approximate solu-
tion ¢™. The result is a linear first-
variation equation system for a first-
variation potential d¢™ on the finest
grid,

m

o = ¢" + ap” (34)

Q" - 1P e™ (35)

The long-wavelength part of the
correction d@® will be computed on
the coarser grids of the grid
sequence. This requires the defini-
tion of equation systems

arR =

d&R™ , n=m1(1)1, (36)

for these long-wavelength parts on
the coarser grids by a restriction
process. In order to obtain simple
restriction rules based on the inter-
pretation of the linearized equation
system (35) as a system of mass-con-
servation equations and boundary con-
ditions, the grids are chosen stag-
gered so that four cells of a grid
coincide with one cell of the next-
coarser grid, see figure 8b. Then the
equation systems C% dp? = dR® may be
defined recursively from the one on
the finest grid.

At each cell of a grid HD, the

c? ap” =

first-variation equation is assumed
to be known and to have the form:
nT dn n
vV.'. dF = dR. . (37)
1,3 1,] ?
dFdn - an a dFan + dFarn , (38)
ar" = p® viagt (39)
ar® = A" vMag” , (L0)
where, on the finest grid (n = m),
the dR? are residuals of ¢ in (1):
>
moo_ _ guT gdm (41)
1.9 1,3

aF, 4F?, and aF?Y are the first-
variations of P, F&, and F&F around

¢ so that, on the finest grid, P™ and
A" may be shown to be the 2%2-matrices

P = [p h {G=M2 U UT/q2}1™, (42)
A"=0 if Mg 1 else
[p b (1-M2) (U U /q2)T™ . (43)
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Each equation

glo=1)T _ ggln=1)

Lod Lod
of a large cell (i,]) on a grid H
(see Fig. 8) is defined from the four
corresponding equations (37) on grid
H® by requiring that the coarse-grid
equation should represent a mass-con-
servation equation for the long-wave-
length content dpP~! of a suitable
class of correction grid functions dyP.
From this requirement, restriction
rules for the residues and the coeffi-
clent matrices are readily derived
with mass-flux considerations. For
example, the mass flux through the
face (i,j+3) of the large cell (i,j) in
figure 8 should be equal to the total
mass flux of the two corresponding
faces of the small cells, giving

n-1) _

(Lk)

n-1

ard(

n-1 _
(P de)izi+% = (45)

1 n n

3 . . + v . . .
: [ (P de)l,J+% (P dw)1+1’J+%]
This should be true for the long-wave-
length content in d¢®. For the long-
wavelength content, the three gradients

in (45) are about equal:

n-1 n
vap). . 5 = (V). .
( @)1,J+% ( w)l’J+%
n
=:(de)i,j+% s (L6)

so that an equation for the coefficient
matrix P on the coarse grid is found:

(47)

n

141,543/

-1
. o1
I.J%s

n

=1 . . +
? (P1,3+§ F

Similar arguments are used to define
the other coefficient matrices at the
cell-face centres on the grid H?~!. The
residues are readily restricted by
applying a discrete version of Gauss'
theoren.

From (47) and similar formulas it
follows that the coefficients at the
cell-face centres are determined with
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coefficient-welghting. Residual
weighting is also applied: each resi-
dual dR?:i on the coarse grid turns
out to = be a weighted average of
the residuals of the four smaller
cells on the next-finer grid that are
covered by the coarse-grid cell (i,j).
The linearized forms of the
Neumann boundary conditions (27,28)
are restricted to coarser grids in a
similar way as illustrated by (45-L4T).

When the equation system
Cl dpm = JR™® for the desired correc-
tion d@® of the potential has been
restricted to the coarser grids, dom
is estimated. This is done by a
recursive process involving on each
grid improvement of dY® by line
relaxation, and subsequent prolonga-—
tion toc the next-finer grid by
bilinear interpolation. The process
starts on the coarsest grid by putting
the initial correction potential dp!
zero. When a dg™-1 has been prolonged
to a dY™ on the finest grid of the
grid sequence, d¢® is first added to
the last potential ¢™ to a new ¢
this new potential is subseguently
improved by nonlinear line relaxation
over the entire finest grid. This
nonlinear relaxation on the entire
finest grid terminates the multigrid
cycle.

On each grid, one line-relaxation
sweep over the grid is sufficient. On
the coarsest grid H', it is desirable
to make more sweeps, however, to
obtain a reasonable estimate of dow!l.
Four sweeps were found a suitable
number in applications.

5. Stability

From numerical experiments, it
was found that both the application
of mass~flux-vector splitting as well
as calculation of gradients, veloci-
ties, and densities at cell-face
centres are necessary to obtain good
stability properties. As far as sta-
bility at sonic lines and shocks is



concerned, much insight may be obtained
from (9-13).

It 1s also very helpful to analyze
the structure of the coefficlent
matrices in the first-variation equa-
tion (37) of each individual nonlinear
discrete mass-conservation equation (1).
A necessary condition for stability of
the nonlinear finite-difference equa-
tion system is stability of each indi-
vidual first-variation equation (37),
because (37) is an exact linearization
of (1). The last property is a conse-
quence of the computation of g and p
from V@ at cell-face centres (in stead
of at cell-face corners, as usually is
done). The stability of each first-
variation equation (37) depends on the
eigenvalues of the matrices PB-AT and
AR see (L2,L43). It may be shown that,
in subsonic flow, P® is positive defi-
nite and A™ is zero while, in super-
sonic flow, PZ-A™ and A® both are
precisely semi-definite, with AT having
ohe negative eigenvalue corresponding
to the streamline direction U/q, and
PH_ATl having one zero eigenvalue also
corresponding to the streamline direc-
tion U/q. This may be concluded from
the following factorization for super-
sonic flow of the mass-flux vectors
and matrices (the superscript m for the
grid is omitted):

1 | e*a*/q 0] 1
F-F® = nH v v Ty
. 0 p ]
[(pg-p*q*)/q O
=1 1
F* = hH 'V W v Tye
] 0 o |
1 | 0 0] T _1T
P-A =hH V viETT
| 0 p |
[ p(1 - M2) 0]
-1 -1
A=nhHEV '
0 0|
(48-51)

where V is the orthornormal matrix
(8), and H is the Jacobian of the
mapping from the computational to the
physical plane, so that G = H ! H™IT,
Mass-flux-vector splitting leads thus
to an exact separation of the posi-
tive and negative eigenvalues of the
matrix P associated with the first-
variation dF = P Vdp of the mass-flux
vector F = p h U. The positive eigen-
value in the part P-A suggests cen-
tral differencing for F-F& and its
first variation dF-dF®, the negative
eigenvalue in the part A suggests
upstream differencing for F&' and
drar,

The factorizations follow
directly from the relation

-1T
v o,

[ o]T = vl oH

s
(this follows from the chain rule for
differentiation and from @, = 0), so
that, together with (4,8), we obtain
-1

U/ q =" vi{1 ol , (52
1 0
Ut/ g2 = nt oy yo ot
0 0
(53)

It will be seen from the results
to be presented that approximately
normal shocks are very steep. Detailed
analysis of shock operators shows that
this is a direct consequence of the
eigenvalue of P-A corresponding to
the streamline direction being zero,
while F-F2 has a constant sonic
streamline component; see (11), and
(48,52). The last property means
that the central-difference part of
the mass-conservation equation (1) of
cells just ahead of approximately
normal shocks are independent of the
large @gg in the shock. On fine grids,
the Jameson artificial viscosity has
also this property, if the coeffi-
cients in this viscosity are evaluated
at cell centres.

Mass-flux-vector splitting as
presented here has been extensively
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tested numerically, and was found use-
ful for approximately normal shocks
because the matrix U UT/q2 in the mass-
flux vector F2 is the image in the com-
putational plane of a unit vector along
the streamline in the physical plane,
see (52). It may be expected that steep
oblique shocks will at least require
replacement of U UT/q2 by some matrix
0 0T, where U is the image in the com-
putational plane of a unit vector
approximately normal to the oblique
shock.

The definiteness properties of the
matrices PI-AD gnd AT are used for the
design of diagonally-dominant tridiago-
nal matrices to be applied in line-
relaxations, see section 6 below. The
definiteness properties are transferred
to coarser grids by the simple restric-—
tion rules of the form (47), so that on
coarser grids these properties are
eagily traced. This is important for
the convergence of relaxations on the
coarser grids.

6.

Line relaxation

In each multigrid relaxation sweep
and on each grid HO of the grid
sequence, an approximation of the solu-
tion the first-variation equation
system (36): C0 dp? = dRD or of the
nonlinear equation system (31):

(e (r,)) = QU is improved by one or a
few line-relaxation sweeps over the
entire grid. Relaxation in downstream
direction is applied; a sweep over the
lower part of the aerofoil is followed
by a sweep over the upper part.

Tridiagonal equation systems to be
used in line relaxation sweeps may be
derived in various ways. For example,
Jameson used an analysis of a pseudo-
time-dependent process to derive these
relaxation equations (Ref. 23). However,
the relaxation equations may also be
derived directly from the first-varia-
tion equations by considering relaxa-
tion on each individual grid line as a
crude Newton iteration step at that

grid line.

The derivation of the relaxation
equation system of each i-line starts
thus with the assumption that for the
potential values on the i-line a cor-
rection problem Mas to be solved. We
may put on the entire grid:

n

ac® = ag’-a¢” or adac

(54)

where d¢n or ¢n are given estimates of
potentials, and dC® is the correction
to be computed from a relaxation
equation system. Initially, this
system has the same form as the first-
variation equation (37-40), with the
mass-flux vectors dFR, dF31, and

drar? now depending on dCPR in stead

of on adgh:

n

ar (55)

(56)

p? vlach ,

aw an

A% vRac? ,

while the right-hand side is replaced
by the residual of d¢® or ¢% in (37)
or in (1). This equation system is
subsequently crudely approximated to
a simple relaxation system for the
calculation of dCi j-values on line i,
with a tridiagonal diagonally-dominant
coefficient matrix. The approximation
process consists of the following
steps.
e Minite~difference formulas with
asymptotic scaling are replaced by the
usual difference formulas.
e Second-order cross-differences 4ACR
are removed by zeroing the off-diagdnal
elements in the matrices PR-AD and AR,
The only differences that remain are
those of ACE. and dC% multiplied by
diagonal elements of PR-AD gnd AR
with a known sign (see the discussion
in section 5 about the definiteness
properties of PR-AN and AD).
e Retarded fluxes 4F8TN representing
inflow into a cell are zeroed. This
simulates, for each cell in the super-
sonic zone, a zero initial condition
if the calculation of dC? j-values on
>
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line i is considered to be an isolated
subproblem,

& Corrections dC},, s,g at points
(i+a,i+B) not yet uﬁgated in the cur-
rent sweep are zeroed. This simulates a
Dirichlet boundary condition in the
subproblem.

The resulting tridiagonal system 1s
augmented by a formula for the improve-
ment of the Neumann boundary condition,
derived by linearizing the nonlinear
condition (28), and (crudely) approxi-
mated by one-sided differences at the
point (i,J) in such a way that
diagonal-dominance is preserved.

The tridiagonal equation system
derived in this way from the linear
first-variation equations turns out to
be practical identical to that of
Jameson (Refs 23,3,5) if the flow is
subsonic or supersonic, however, with-
out Jameson's subsonic or supersonic
relaxation factors. At sonic lines and
shocks, a comparison with Jameson's
formulas was not possible because of
lack of published results. The relaxa-
tion equation of sonic or shock cells
turns out to be different from those
elsewhere in the flow if they are
derived from the first-variation equa-
tion.

Relaxation factors were not used
in the calculation results presented
below, except at sonic cells where
underrelaxation was applled.

7. Results of numerical experiments

From a large number of numerical
experiments, a number of cases have
been selected. This selection permits
a separate analysis of the effect of
circulation changes, grid changes,
shock-position variations, etc.

All results presented were produced
by calculations made on three succes-~
sive grids of size 3Lx10, 66%18,
130%34, which are numbered 2, 3, and L.
Each 130#3% grid is similar to that of
figure 3., Multigrid sweeps for the cal-

culations on grid 2 used two grids
levels, multigrid sweeps for grid 3
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three, and multigrid sweeps for grid
b used four grid levels.

Figure 9 concerns the flow around
a symmetrical 12.8 % thick Karman-
Trefftz aerofoil at M_= 0, o =0
(1inear problem, no circulation). Two
conclusions follow from the conver-
gence history.

e The multigrid convergence rate is
good (about 0.6 per multigrid cycle).

& The residual norm increases when a
golution is prolonged to a next-
finer grid to serve as starting
gsolution. This is due to a poor
resolution of the coarser grids at
the leading edge, as will be evident
from figure 3 when 4 or 16 cells of
the finest grid are grouped together
to one cell of a coarser grid.

Results of the incompressible
flow around the same Karman-Trefftz
aerofoil, at an incidence a, of 109,
are presented in figure 10. It is
seen that:

e changes in circulation, in particu-

lar large changes, may lead to large

increases of residual norms. This is

due to large changes of the solution

at the leading edge.

the grids 2 and 3 are too coarse at

the leading edge to permit a reason-

ably accurate calculation of the

expansion of the flow at the

leading edge.

the multigrid convergence rate is

good (about 0.6 per multigrid cycle).
Results for a high-subsonic flow

are presented in figure 11

(NACAOO12, M_ = 0.63, a_ = 2°). The

addition of subsoniec nonlinearity

does not lead to new conclusions.

The added complication of a
shock in the calculation process is
first considered for a nonlifting
case with a moderate shock (NACA0O12,
M_ = 0.8, a_ = 0). Results are pre-
sented in figure 12. New conclusions
are the following.

e After each multigrid-relaxation
cycle, and on all but the coarsest
grid 2, the maximum norm of the



residuals, (33),is usually found to be
increased by an order of magnitude.
This annoying behaviour of the maximum
norm is due to velocity overshoots or
undershoots at shocks, as discussed in

section 3, and illustrated in figure 6.

A typical example of a velocity over-

shoot is presented in figure 12d. (This
figure is the result of a somewhat dif-

ferent algorithm not presented in this
report; the velocity overshoot effect
is representative, however.) As dis-
cussed, the velocity overshoot is due
to a tendency of multigrid-relaxation
cycles to keep the shock position
fixed. See also Jameson's remark in
reference 11, page 125 about "the
appearance ahead of the shock of a
temporary overshoot", and the corre-
sponding flat segment in the conver-
gence history in his figure 2b. This
implies that there must be large
residuals in small zones keeping his

average-absolute-value norm temporarily

about constant.
e The velocity overshoots can be
reliably transformed with partial

relaxation sweeps on the current finest

grid to appropriate shock displace-
ments: partial relaxation usually

reduces the residual norm considerably.

e The lack of resolution at the lead-
ing edge on the coarser grids leads to
too small flow expansion over the
leading edge and to too forward shock
positions. It may be expected that
improvement of the resolution at the

leading edge on grids 2 and 3 will lead

to better pressure distributions so
that a smaller calculation effort to
improve shock positions is required
(see Holst and Brown, Ref. 24),

A transonic case with 1ift is
presented in figure 13 (NACAOO12,
M_ = 0.75, a_ = 2°).

[+2]

been computed in references 7 and 11.

There are no important new points to be

observed. The peak Mach number ahead
of the shock is 1.37. Hence, for prac-
tical purposes, the shock is fairly
strong. The shock covers obviously two
cells; this is always true.
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This case has also

Central processor times of the
research code used for the numerical
experiments are presented in table 1.
These times were measured on the NLR
Cyber T73-28 computer. The table illu-
strates that the algorithm is effi-
cient for subsonic flows. For
transonic flows, the computation

(Mw,am) GRID NBR OF NBR OF CP-S TOTAL

MGR PART. PER CP-S
CYCLES RELAX. GRID
SWEEPS
(.63,0) 2 1k 0 31
3 10 0 Th
L 8 0 219 32U
(.8,0) 2 8 1h 23
3 5 30 6L
L 10 122 680 T67
(.63,2°) 2 21 29 58
3 23 68 231
L 25 278 1s54Lh 1833

times are too long. This is primarily
due to the partial relaxation sweeps
used to update shock positions. A
continued search for improved shock-
position update algorithms will be
required.

Results of computations with
various forms of artificial-viscosity
terms instead of split mass-flux-—
vectors are omitted. We found all
artificial viscosity-terms tested to
have poor stability properties at
sonic lines and/or shocks, in parti-
cular on coarse grids, and also at
the tops of supersonic zones when
corrections were large. This was due
to the fact that the viscosity terms
did not deliberately exclude expan-
sion shocks.

8. Conclusions

From the results presented in
this study it is evident that the
introduction of multigrid methods in
transonic potential-flow calculations

is not a simple matter. A number of
conclusions are clear from the




present study, however.

e Circulation changes give usually rise
to an increase of residual norms
(section 7).

e Fast-solver algorithms are consider-
ably more sensitive to nonlinear insta-
bility at shocks and sonic lines. This
requires difference formulas with
excellent stability properties. Such
formulas are obtained with mass-flux-
vector splitting (sections 2,5).

e It will be hard to improve shock-wave
positions by multigrid relaxation pro-
cesses, because multigrid relaxation is
a linear or weakly nonlinear (FAS) cor-
rection process, while shock-wave dis-
placement processes are highly non-

linear (section 3, figure 6, section 7).

Usually, velocity overshoots or under-
shoots at shocks have to be eliminated
during the calculation process.

e In order to obtain a useful residual
norm to be used in termination test of
loops, finite-difference formulas with
asymptotic scaling have been used
(section 2, equation (33)). Compared to
the usual finite-difference formulas,
these are more expensive, however.
There is a possibility that asymptotic
scaling may be avoided if termination
tests not using residual norms can be
found.

e The algorithm was found to be reason-
ably robust in numerical experiments
(section 7). This conclusion is sup-
ported by theoretical results concern-
ing the stability of the equation
system (section 5; section 2, egs
(12-13)).

Concluding, it can be said that,
for subsonic-flow calculations, the
algorithm was found to be quite effi-
cient. For transonic-flow calculations
with shocks, the algorithm was found
to be reliable. However, more efficient
procedures for the update of shock-
positions are required; these should
be at least as robust (convergence
guaranteed) as the preliminary proce-
dure (partial relaxation near shocks)
investigated in this study.
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INTRODUCTION

Two computational approaches which achieved substantial popularity
during the past decade are spectral methods and multi-grid techniques. The
former have proven highly efficient for time-dependent, smooth flows 1n
simple geometries (refs. 1-3}. The latter have been remarkably successful
for elliptic equations and some steady-state calculations (refs. 4-7). The
principal advantage of spectral methods lies 1in their ability to achieve
accurate results with substantially fewer grid points than required by
typical finite difference methods. Despite the fact that spectral methods
are represented by full matrices, explicit time~stepping algorithms can be
implemented nearly as efficiently for them as for finite difference methods
on a comparable grid. Transform methods (ref. 8) are often the key to this
efficiency. For ijmplicit methods or for steady—-state equations, direct
solution of the spectral equations is not practical in general. Iterative
schemes for such equations are essential. Orszag (ref. 9) has described
several attractive methods.

This paper examines an alternative approach which employs multi-grid
concepts in the iterative solution of spectral equations. In particular,
spectral multi-grid methods are described for self-adjoint elliptic equatioms
with either periodic or Dirichlet boundary conditions. For realistic fluid
calculations the relevant boundary conditions are likely to be periodic in at
least one (angular) coordinate and Dirichlet (or Neumann) 1in the remaining
coordinates. Spectral methods may not always be effective for flows in
strictly rectangular geometries since corners generally introduce
‘singularities into the solution. These singularities can seriously degrade
the accuracy of a spectral method. If the boundary is smooth, then mapping
techniques (ref. 9) can often be used to transform the problem into one with
a combination of periodic and Dirichlet boundary conditions. Spectral multi-
grid methods in these geometries can be devised by combining the techniques
presented separately here.

Research of TAZ was supported by NASA Grant NAG1-109; research of YSW and MYH
was supported by NASA Contract Nos. NAS1-15810 and NAS1-16394, respectively,
while they were in residence at ICASE, NASA Langley Research Center.
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SYMBOLS

diagonal matrix of PDE coefficients at collocation points
variable coefficient in PDE

diagonal matrix of PDE coefficients at collocation points
variable coefficient in PDE

matrix representing Fourier transform

constants used in describing the discrete cosine transform
matrix representing first derivative operator in transform space
matrix describing trigonometric interpolation in transform space
right-hand-side terms of PDE at collocation points
right-hand-side term of PDE

grid on level k

pre-conditioning matrix

finest level of the multiple grids

any grid (or level) k of multiple grids

matrix representing spectral approximation to PDE operator
lower~triangular matrix

matrix representing first derivative operator in physical space
vector used for describing M

number of collocation points (in one coordinate direction)
number of distinct relaxation parameters

matrix representing coarse-to~fine grid interpolation

matrix representing fine~to-coarse grid interpolation

matrix representing finite difference approximation to PDE
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T Chebyshev polynomial of degree n

U vector of solution at collocation points
u upper-triangular matrix

u solution to PDE

u Fourier transform of solution to PDE

A vector of corrections in multi-grid scheme
v approximate solution to V

X,y physical space coordinates

6j,1 Kronecker delta function

> amplitude in variable coefficient term

A eigenvalue

& eigenvector

o) spectral radius

w relaxation parameter

u smoothing rate

u average smoothing rate

PERIODIC PROBLEMS

Fourier Spectral Approximations

Several types of spectral approximations can be employed. The specific
method used here is often termed collocation or pseudo-spectral
approximation. In many cases this method 1s easier to implement and is more
efficient than the alternative Galerkin and tau approximations. A thorough
discussion of all these methods can be found in reference 3.

For a periodic problem spectral approximations should be based wupon
Fourier series. In the collocation approach the fundamental representation
of the solution remains in physical space. The Fourier coefficients are only
employed as an intermediate result in the approximate evaluation of
derivatives. Consider a function u(x) which is periodic over the interval
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[0,27] « Use N evenly spaced collocation points
Xj = ZTrj/N j=0,1,ooo,N“1 (1)

and denote u(x.) by wu. . The first step in the evaluation of du/dx is
the computation of the approximate Fourier coefficients ﬁp via

N-1 .
6= (/M 3 uje TPy p=-N/2,-N/2+1, vas,N/2=1 (2)
j=0
Since the u(x;) are real, G—N/Z is real and ﬁ_p= uz for lpl < N/2
where the * ‘denotes complex conjugation. The derivative is then computed
via
du/dx(xy) = VIR 1pd e TPy §=0,1,...,N~1 . (3)
=._§+1

Both sums can be evaluated in O(N 1n N) operations by the Fast Fourier
Transform (ref. 10). This algorithm is most commonly employed with N
chosen as a power of 2 .

Note that the lower limit on the sum in equation (3) . is not p = =N/2
but p =-N/2 +1 ., This change is equivalent to setting U_n/o = 0. The
right-hand-side of equation (3) is necessarily real. The neglected term

—i(g)x.

-i (N/2) e "°2°73
is purely imaginary and cannot contribute to du/dx(x.) . This neglected
term represents the familiar "two-point oscillation" in u(x) . (Finite

difference schemes which use central differences for first derivatives also
remove the two-point oscillation.)

The spectral evaluation of derivatives has a convenient matrix
representation. Let U denote the vector of the solution at the grid, or
collocation, points, i.e.,

) (4)

U= (uo,ul, « ..y uN—l

let C represent the discrete Fourier transform, i.e.,
~2m i1 (- /N
le = (1/YN) e 175 §,1=0,1,«..,N~1 (5)

and let D be the diagonal matrix which represents the first derivative in
Fourier space, i.e.,
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i(j - N/2) for j 1,2,¢00,N=1
Dss = (6)
I3 0 for j

1]
=]

*

Note that C != C¢" , the Hermitian transpose of C . Then the matrix

-1
M=C DC (7)

represents (in physical space) the spectral evaluation of a first derivative.
This matrix is given explicitly by

Mjl= Mj—l 9 (8)
where
0 j=0, ¥ N, T 2N, . . .

M, = (9)
cos (1-1/N)7T{/(2 sin(Tj/N}) otherwise .

A spectral approximation to the ordinary differential equation
(d/dx){a(x) du/dx} = £(x) (10)
on [0,2m] with periodic boundary conditions, and with a(x) and f(x)

infinitely differentiable as well as periodic, satisfies the discrete
equation

LU=F, (11)
where
L = MAM , (12)
Aji=axj)dj,1 (13)
and
F = (fosfly e o . st_l) . (14)
Equation (11) may be inverted to yield
U= ('plcalc i) F (15)

Although the matrix D 1is technically singular, this merely reflects the
usual non-uniqueness of the solution of equation (10). All of the matrix
multiplies required by the right-hand-side of equation (15) may be
implemented efficiently. There are three diagonal matrices and four Fourier
transforms. Thus, the solution to equation (l1) can be obtained directly in
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O(N 1n N) operations, even though the matrix L is full.

Unfortunately, efficlent direct solutions are not available din higher
dimensions. Consider the self-adjoint elliptic equation

) ou ) u
3}; {a(x,y)s;{- + B_y {b(st)g = f (16)

on the square [0,27T) x [0,2T] . Again 1mpose periodic boundary conditions
and assume that the functions a , b and f are also periodic as well as
infinitely differentiable. A spectral approximation to equation (16} will
exhibit exponential convergence, i.e., the error will ultimately decrease
faster than any finite inverse power of the number of collocation points.

For simplicity, suppose that an N x N mesh is employed. Define the
approximate solution

Ujp=ulxs vy for j,1=0,1, ..., N-1 . (17)

Define F in a similar fashion and let A and B be the diagonal matrices
representing a(x,y) and b(x,y) , respectively, in the manner of equation
(13). The discrete approximation to equation (16) is

LU=F, (18)
where the fourth-~order tensor
L=MIDAMPI + (I@MBI®M , (19)

with () denoting a tensor product and I representing the identity matrix
of order N .

The authors are unaware of any efficient method for solving equation

(18) directly. The iterative methods described 1in reference 9 are one
possible solution scheme. A different sort of iterative method -- one
involving the use of multiple grids —-- is described below.

Euler Iteration on a Single Grid

The direct solution of the N2 x N2 system represented by equation (18)
would require O(N#) storage locations and O(N 6) operations. Many
iterative schemes require only 0(N 2 storage locations and O(N2 In N)
operations per step. Perhaps the simplest iterative scheme 1s the Euler

method

U<--U-w(F-LU, (20)
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where W 1s a relaxation parameter. Aside from the coefficients a(xj,y7j)
and b(x-,yl) s the only substantial storage required is for the residual
[the ter@m in parentheses in eq. (20)], which is clearly O(N?2) . The tensor
L is never. explicitly required. The residual itself costs 0(N% 1n N)
operations to compute. Jacobi’s method (see below) is also economical in
storage and cost per step. Not all iterative schemes used to solve finite
difference equations are practical for the spectral equations, however.

Gatdss-Seidel is an obvious example. The term L U can only be evaluated
efficiently if it is done all at once.

It is instructive to consider the application of the Fuler iteration to
the constant coefficient case a(x,y) = b(x,y) =1 . The tensor L
simplifies to

L=M@I+I@M . (21)

The eigenvalues and eigenvectors of L are
== (p2 + q2 (22
Apq P q”) )

Z(pj +q)
Ejl(p,q) =e s (23)

where the eigenvalues and eigenvectors are labelled by p and q which lie
in the range p,q = -N/2, -N/2+1, ... , N/2-1 . In equation (22), if either
p or q = -N/2, then that term should be replaced by 0 on the right-hand-
side. A single iteration by equation (20) replaces the error component
£(p,q) with (1 + wqu Y} E(p,q) - There are two eigenvectors which are

unaffected by the iteration. One of these -- for p =q =0 -~ represents
the mean level of the solution. It must be specified for the partial
differential equation to have a unique answer. The other term -~ for p = ¢

= -N/2 ~- represents the high-frequency component that 1is ignored by the
discretization. This component should be filtered out of the right-hand-side
F .

This scheme is convergent 1if

w < —2/>\H_l N, T 4/(8=2) % . (24)
The smallest spectral radius 272
o= (N2 = 4N + 2)/(N? - 4N + 6) =1 - 4/N%, (25)
is obtained when
w = 4/(N® =4N + 6) . (26)

According to the usual reasoning, equation (25) implies O(N?) iterations are
required. This means a total of O(N"* 1n N) operations are required in
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order to solve equation (18) in this fashion.

Euler Iteration Using Multiple Grids

Multi-grid methods have become a standard means of accelerating
convergence for finite difference and finite element discretizations of
elliptic equations. The basic processes are the relaxation scheme and the
transfer of residuals and corrections between the various grids. In addition
to specific choices of relaxation and interpolation procedures, a multi-grid
algorithm must give rules governing the transfer between grids. A variety of
control structures for this latter process have been employed. For examples
of some of the control structures, see the flow charts in reference 5. The
present discussion will focus on the relaxation and interpolation procedures,
since they are less arbitrary than the control structure. Moreover, the
description will be given for the spectral discretization of the one-
dimensional problem [egs. (11) and (12))]. This is done simply for notational
convenience. The performance will be assessed, and numerical examples given,
however, for the two-dimensional case.

Define a series of grids (or levels) Gk ’ for k=2, 3, ... , K
covering the interval [0,27] . let G consist of Ny uniformly spaced
points, where Ny = 2k . The solution to equation (11) 1s obtained by
combining Euler iterations on level K with FEuler iterations for related
problems on the coarser levels k < K . Denote the relevant discrete problem

at any level k by

L Vy=F . (27)
On the finest level K , Ly=1L, FK = F and the solution Vg = U, the
solution to equation (11). At any stage in the iterative solution process

for equation (27), only an approximation vj  to the exact answer Vi is
available. If this approximation is deemed adequate, then the approximation

on the next-finer level k+1 i1is corrected via

The matrix P, represents the coarse-to-fine transfer of corrections from
level k-1 to level k . On the other hand, if the approximation v 1is
deemed inadequate, either another relaxation is performed, via

Vk o Vk - wk(Fk - Lka) ’ (29)
or else control shifts to a problem on the next-coarser level k-1 . The
relaxation parameter w; on level k is chosen to damp preferentially those

error components which are not represented on coarser grids. The right-hand-
side of the coarser grid problem is obtained from

Fp-1= Rk(Fk - Lkvk) . (30)
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The matrix represents the fine-to-coarse residual transfer from level k
to level k-1".

For the spectral multi-grid method the natural interpolation operators
represent trigonometric rather than polynomial interpolation. For the one-
dimensional case,

1

Ry = Cx-1Ek-1Ck » (31
-1
Py = Ck E-1Ck-1 » (32)
where the Nk x Nk+1 matrix
Ep =(0 | Iy | O) (33)

(with Ik the identity matrix of order Ny R EE is its transpose, and
Ck is the matrix given in equation (5) for N = Ny . The matrix Eg
represents the dropping of the high-~frequency Fourier coefficients in the
trigonometric interpolation from the fine grid to the coarse grid. Note that
Pk = Rﬁ . The generalization to higher dimensions is straightforward.

For the constant coefficient, one-dimensional case, the finest grid
relaxation operator

LK=CKD CK’ (34)
and it is natural to use

Ly = Cq DiCq (35)
for k < K. It is easy to show that

L1 = RyLyPy (36)

The description of the wvariable coefficient relaxation operator is more
complicated and the details will be published elsewhere. The procedure used
in the numerical experiments reported below amounts to performing the
collocation operations in an alias-free fashion.

For the two-dimensional Poisson equation discussed in the previous
section the 1level k relaxation parameter is chosen to maximize the
smoothing of all the modes except those for which |[pl, |q} < Nk/4 :

= 2/((9/16)»:;- N, +2) . (37)

wk k

This choice produces a smoothing rate for the high-frequency modes of

=1 - 2N2 2 _ .
1 ZNk/(9Nk 32N, + 32) (38)

Hy k
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This smoothing rate 1is listed in Table 1 alongside the spectral radius for
the single grid ZEuler methode. The advantage of multiple~gridding is
apparent. For large Nk s Hp =7/9 . Thus, according to the usual multi-
grid argument, the number of iterations needed to obtain a given reduction in
the residual should be independent of the number of grid points on the finest
grid. This assumes, of course, mno untoward effects of the interpolation
process. But the trigonometric interpolation procedure used here is ideally
suited to minimize the spurious generation of high-frequency components at

these stages.

TABLE 1. Convergence Rates for Euler Iteration in Two-~dimensions

single grid multi-grid
N spectral radius smoothing rate
4 0.3333 0.3333
8 0.8947 0.6364
16 0.9798 0.7193
32 0.9956 0.7510
64 0.9990 0.7649
o 1.0000 0.7778

Alternatives to Euler Relaxation

A straightforward improvement upon the simple relaxation scheme
described in the preceding sub-section is to make it non~stationary. This
approach has been used for accelerating point-Jacobi iterations for finite

difference multi-grid algorithms (see ref. 11). The non-stationary Euler

iteration consists of using n relaxation parameters Wi o Wi po ooe 5 g,
- . N ? 3 . b4
in a cyclic fashion on each level k . These parameters are determined from

the solution of a standard minimax problem over the interval covered by the
high-frequency eigenvalues.

For the two-dimensional Poisson equation, this eigenvalue range 1is
from —(Nk/4)2 to -(Nk/Z—l)2 . The results are only changed slightly if
the upper 1limit of this range 1is changed to —(Nk/2)2 . Then the optimal
parameters are given by

w, , = (32/Nk2)/( 7 cos(j-1/2) W/n + 9) (39)

k,]

and the total smoothing of the high-frequencies after the full n
relaxations is 1/|Tn(—9/7)l » where T (x) is the Chebyshev polynomial of
degree n . Then the effective smoothing rate

W = 1T, -9/ 1R, (40)

182



which is the average smoothing per single step in the cyclic relaxation. The
values are given in Table 2 along with the corresponding effective smoothing
rates for a finite difference multi-grid method which also is relaxed with
Euler iteratiom. The spectral smoothing rates are larger than the finite
difference ones because the ratio of the largest high-frequency eigenvalue to
the smallest high-frequency eigenvalue is 8 1in the former case and only 4
in the latter. This ratio may be termed the multi-grid condition number.
The higher smoothing rate for the spectral method suggests that a larger
number of distinct relaxation parameters should be used here than for the
finite difference case.

TABLE 2. Smoothing Rates for Euler Iteration on Poisson’s Equation

number of spectral finite difference
parameters smoothing rate smoothing rate

1 0.7778 0.6000

2 0.6585 0.4685

3 0.5995 0.4198

4 0.5676 0.3964

5 0.5485 0.3749

It should be kept in mind that this larger eigenvalue ratio for the
spectral method occurs because this method represents the larger eigenvalues
of the partial differential equation much better than finite difference
methods. Indeed, it is just this property which is responsible for the
exponential convergence rate of spectral methods as N is increased and for
their low phase-error in time-dependent calculations.

Another obvious relaxation scheme is point-Jacobi. The actual
implementation of this method requires that the diagonal elements of the
matrix L be known explicitly. Consider the one~dimensional situation,
where L 1is given be equation (12} for the general case. It would appear
that the evaluation of the elements L:: requires O(N?2) operations. This
would be impractical since the results of the previous section suggested that
only O(N 1ln N) operations are needed to get the solution itself.

Nonetheless, Jacobi relaxation 1is worth considering since transform
methods may be employed to compute the requisite diagonal elements* in only
O(N 1n N) operations. It is clear from equation (9) that ﬁj is odd in j .
Thus, N-1

L., =
3J 1=0

But this is a convolution sum and may be evaluated efficiently by the
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transform methods described in reference 8. Therefore, even for non-linear
problems, Jacobli relaxation may be implemented efficiently.

Numerical Examples

The spectral multi-grid method was implemented for the two-dimensional
problem [eq. (16)] for which the coefficients

a(x,y) = b(x,y) = 1+ ¢ eSOSHY) (42)

and the solution itself

u(x,y) = sin(mTcos x + T/4) sin( Tcos y + 7/4) . (43)

The Fourier coefficients of this function may be expressed in terms of Bessel
functions. Reference 3 (pp- 35-37) uses this function to illustrate
exponential convergence. The term T/4 serves to make all the Fourier
coefficients non-zero. The constant € in equation (42) measures the
departure of the equation from the strictly Poisson form.

A simple control structure was selected for the multi-grid algorithm:

start on the finest level and relax once on each 1level in turn until the
coarsest level k=2 ; there iterate until convergence; then work back up to
the finest 1level, relaxing once more on each intermediate level. This
process is repeated until the desired accuracy is achieved. This algorithm
requires more frequent interpolation but 1s less arbitrary than many
alternatives. Despite the necessity for employing the Fast Fourier Transform
in the trigonometric interpolations, this portion of the computations takes

less than 10% of the total computation time.

TABLE 3. RMS Residuals for Fourier Spectral Multi-grid
Using Stationary Euler Iteration

relaxation
number € = 0.0 e = 0.1 e = 0.2
3 2.92 (1) 3.23 (0} 3.72  (O)
6 2.27 (-1} 2.49 (-1} 3.12 (~1)
9 3.24 (=2) 3.52 (=2) 4.40 (=2)
12 1.02 (-2) 1.11 (-2) 1.37 (-~2)
15 4.00 (=3) 4.37 (-3) 5.55 (=3)

The results of calculations for which the finest level K = 5 are shown

in Tables 3 and 4. The non-stationary Euler iteration used 3 distinct
parameters. The transfer between grids does not occur until all 3
relaxations have been performed. The residuals are 1listed in the tables
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after every 3 relaxations on the finest grid. The number in parentheses is
the exponent of the residual. For comparison purposes note that Euler
iteration on a single grid exhibits a residual of about 10 after 15
relaxations. The multi-grid results are a marked improvement.

TABLE 4. RMS Residuals for Fourier Spectral Multi-grid
Using Non-stationary Euler Iteration

relaxation
number € = 0.0 e = 0.1 e = 0.2
3 2.82 (1) 3.12 (1) 3.47 (1)
6 2.42 (-1) 2.10 (-1) 2.56 (-1}
9 6.35 (-3) 3.68 (=3) 5.57 (=3)
12 4.56 (-4) 3.19 (=4) 6.30 (-4)
15 8.30 (-5) 5.36 (~5) 1.17 (=5)

On a 32 x 32 grid the true solution of the Fourier collocation equation
(18) has an RMS error of - 5.08 (-10) compared with the exact solution of
equation (43) for € = 0.0 . The RMS error of the non-stationary iteration
after 15 fine-grid relaxations is 2.20 (-7) . To get the full accuracy
out of a spectral method it may be necessary to reduce the residual by many

orders of magnitude. By contrast a second-order finite difference
approximation on a 32 x 32 grid gives an RMS error of 7.64 (-2) for
the € = 0.0 problem. Even a fourth-order method gives only 5.04 (-3} .
For this problem, at 1least, it seems worthwhile to accept the less

advantageous smoothing rate of the spectral multi-grid method (see Table 2},
since a far smaller grid can be used than for a finite difference method.
DIRICHLET PROBLEMS
Chebyshev Spectral Approximations
For problems with Dirichlet (or Neumann) boundary conditions, spectral
approximations should be based upon Chebyshev series. The standard interval
is [-1,1] and the collocation points are

xy = cos(2mj/N) J=0,1, eea ,N . (44)

The analog to equation (7) with Dirichlet boundary conditions may be written
in the form of equations (11)-(14) where now

le = (2/NEjEl) cos (T§1/N) j,1=0,1, «oe 4, N, (45)

185



2 j=0 or j=N

c, = (46)
J 1 1<jsN ,

21/cj 1>j+1 and 1=j+1 (mod 2)

0 otherwise ,
and

2 j=0
c. = (48)
J 1 i>1 .

Reference 3 1is a good source for many details about Chebyshev collocation.
The matrix M which represents the Chebyshev approximation to a first
derivative is again given by equation (7) where now

Mjl = cj(Mj+l + M.j_l)/(cl sin(mj/N)) for 1<j<N-1
_ _ 2
MOO = M = (2N“+ 1) /6 (49)
= L) - - l - -
MOl = MNl 2(-1)-/Q1 cos (m1/N)) for 1<1<N-1,
where
0 =0, 2N, +4N, + «
M, = . (50)
(1/2) (=1)3*L cot (mj/N) otherwise .

Once more M 1is a full matrix but the product M U can be evaluated in
O(N 1n N) operations.

Pre-conditioned Euler Iteration Using Multiple Grids

The direct analog of the Euler iteration method described in the
preceding section is not practical for the Dirichlet problem. The difficulty
is that for the Chepyshev second derivative operator the multi-grid condition
number grows as N°“ . In the one-dimensional case Gezshgorin's Theorem can
be used to show that the largest eigenvalue grows as N~ (ref. 3). All but
the several largest eigenvalues are good approximations to the eigenvalues of
the cgntinuous problem. Thus, the smallest high-frequency eigenvalue grows
as N° . (Direct numerical computation of the eigenvalues supports these
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conclusions.) Since the ratio of these two eilgenvalues (the multi-grid
condition number) is N2 » the smoothing rate of a straightforward Chebyshev
- Euler multi-grid method 1is of the same order as the spectral radius of the
Fourier Euler iteration on a single grid (see Table 1). The non-stationary
Chebyshev Euler multi-grid method has the same problem.

Clearly, pre-conditioning d1is essential for an effective Chebyshev
spectral multi-grid algorithm based on Euler iteration. Thus, 1n place of
equation (20) the relaxation scheme is

P<omU- wEi(F-11), (51)

where the pre-conditioning matrix is denoted by H. An effective pre-
conditioning matrix has been devised by Orszag (ref. 9) for finding solutions
iteratively on a single grid to Chebyshev spectral approximations. That pre-
conditioning matrix, denoted here by S , is a full finite difference
approximation to the spectral matfix L . Orszag noted that the conventional
condition number of the matrix S L should be about 2.4 regardless of N .

The pre~conditioning matrix employed in the present spectral multi-grid
calculations is a cheaper but less precise version of S . Instead of using
S ditself an approximate lower-triangular/upper-triangular decomposition of
S dis used as H , i.e.,

H= Lu ’ (52)

where script letters are used to denote the lower-triangular (l}) and upper-
triangular (u) factors. This matrix H 1is cheaper to employ than S
because H™ L can be found by simple forward- and back-substitutions, whereas
finding sl  amounts to computing the solution to a finite difference

discretization of the problem.

To determine H one starts with S as a standard finite difference
approximation to equation (16} on the non-~uniform grid of the Chebyshev
collocation points. The matrices L and ® are determined by the row sum
agreement factorization which enforces the following conditions:

(1) L and « have non-zero elements only on those positions which
correspond to the non-zero elements in the lower- and upper-triangular
part of S {tself.

(2) Whenever S.. #0 and { ¥ 1, then Hjl = S., . (The off~diagonal
elements oleH whose locations correspond to gﬁe non-zero off-diagonal
elements of S are set to those values.)

(3) The row sums of H are the same as those of S .

For further details on this sort of pre-conditioning see reference 12.
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TABLE 5. Extreme Eigenvalues of the Pre-conditioned Matrices

siL i
N smallest largest smallest largest
4 1.000 1.757 1.037 1.781
8 1.000 2.131 1.061 2.877
16 1.000 2.305 1.043 4.241
32 1.000 2.363 1.034 5.379

The decreased accuracy of the matrix H 1is indicated in Table 5, which
lists the smallest and largest eigenvalues of the pre-~conditioned matrix
H "L . In contrast to the matrix sl » for which the largest eigenvalue is
roughly 2.4 , the largest eigenvalue here shows a slow growth with N,
evidently increasing as ¢¥N . Both matrices yield essentially the same value
for the smallest, eigenvalue. Moreover, the smallest high-frequency
eigenvalue of H 'L stays roughly constant -- at about 1.45 --as N
increases. Thus, the multi-grid condition number of this pre-conditioned

Euler method increases slowly with N .

The eigenvalue results given above suggest that an Euler iteration
scheme using the approximate LU factorization form of pre-~conditioning will
have the convergence rates 1listed in Table 6. The advantage of using
multiple grids here is mnot as great as in the periodic case. The basic
problem is the slow growth of the multi-grid condition number with N .
Clearly, better forms of pre-conditioning are needed.

TABLE 6. Convergence Rates for Euler Iteration in Two-dimensions

single grid multi-grid
N spectral radius smoothing rate
4 0.264 0.264
8 0.462 0.330
16 0.605 0.490
32 0.725 0.630

The dinterpolation for this multi-grid schemd can be based upon the
Chebyshev polynomial expansions of the solution. Expressions analogous to
equations (31) to (33) can be employed, where equation (45) 1s now used for
the matrix C and the expression for the matrix E 1is altered accordingly.
If the boundary conditions are homogeneous, then C can easily be

manipulated into a self-adjoint form.
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Non-stationary Euler iteration will, of course, improve the multi-grid
smoothing rates. The use of 4 distinct parameters reduces the smoothing
rates of the N =16 and N = 32 cases to 0.30 and 0.40 , respectively.

Point-Jacobil is a viable alternative here as well. The present form of
the matrix [eq. (49)] also permits the diagonal elements of variable

coefficient (or non-linear) problems to be computed efficiently by transform

methods. Two convolution sums now appear in the analog of equation (41).
The portion involving can be evaluated 1in the usual manner after

M
~1
allowing for special trea%ment of the terms for which j = Oand j = N.

The portion inyolving ﬂ'+l appears 1in transform space as the product of the
transform of and thd complex conjugate of the transform of the variable

coefficient term 51 .

Numerical Example

The test Chebyshev multi-grid@ method Thas the

coefficients

problem for the

a(x,y) = b(x,y) = 1 + € (x? +y2) (53)

for the exact solution
u(x,y) = sin(T cos x) sin(Tcos y) . (54)

Some of the results using the finest level K = 5 are listed in Table 7. On
a single grid the residual for the € = 0.0 case is 8.39 (-1) after 15
relaxations. The exact solution to the discrete equations for this case has
an error that is essentilally round-off error. There is relatively little
content in the high-frequency component. The multi-grid approach to this
problem makes its biggest gains by using the coarser grids to damp out the
low~frequency components.

TABLE 7. RMS Residuals for Chebyshev Spectral Multi-grid
Using Stationary Euler Iteration

relaxation
number e = 0.0 € = 0.1 £ = 0.2
3 1.25 (0) 1.29 (0) 1.32 (0)
6 2.14 (-1) 1.89 (~1) 1.67 (-1)
9 4.68 (~-2) 3.81 (-2) 3.16 (-=2)
12 1.18 (-2} 9.14 (-3) 7.34 (=3)
15 3.32 (-3) 2.47 (-3) 1.93 (-3)
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An example similar to equation (54) was examined in reference 13, where
two schemes were given for solving the constant coefficient Chebyshev
equations exactly. The results of a recent note (ref. 14) suggest that
greater accuracy can be achieved, especially on problems with singularities,
by sub-dividing the original domain and patching the individual Chebyshev
spectral solutions together along the Internal boundaries. The spectral
multi-grid method can be applied to patched collocation approximations as
well. Moreover, the multi-grid approach would appear to present a noticeable
improvement over the admittedly inefficient schemes used in reference 1l4.

CONCLUSION

The spectral multi-grid methods described here exhibited a substantial
improvement over the simplest iterative schemes. It has not yet been checked
whether this specific algorithm is more efficient than the best available
iterative methods. There, of course, 1is still room for improvement in the

spectral multi-grid methods. This is especially true for the Chebyshev
methods, for which  better pre-conditioning procedures would  Thelp
considerably.

It is technically straight-forward to extend this solution technique to
two-dimensional incompressible Navier-Stokes equations, particularly in the
vorticity-streamfunction formulation, since the problem addressed in this
paper is representative of the advection-diffusion equation. Present efforts
are directed towards using the spectral multi-grid method to compute the

classical problem of flow past a circular cylinder. The appropriate method
for this geometry combines a Fourier approximation in angle and a Chebyshev

approximation in radius.
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APPLICATION OF MULTIGRID METHODS FOR INTEGRAL
EQUATIONS TO TWO PROBLEMS FROM FLUID DYNAMICS.

H. Schippers,
Mathematisch Centrum, 1009 AB Amsterdam.

INTRODUCTION

Multigrid methods have been advocated by Brandt (ref.l) for solving
sparse systems of equations that arise from discretization of partial differ-
ential equations. Convergence and computational complexity of such multigrid
techniques have been studied since. In reference 2 we have shown that these
techniques can also be used advantageously for the non-sparse systems that
occur in the numerical solution of Fredholm integral equations of the second
kingd
(1) f = Kf + g,

where g belongs to a Banach space X and the integral operator K is compact on
X. Theoretical and numerical investigations show that multigrid methods give
the solution of (1) in O(Nz) operations as N -, whereas other iterative
schemes take O(N2 log N) operations (N: the dimension of the finest grid). In
practice this results in algorithms for the solution of these integral equa-
tions that are significantly more efficient than the other schemes. In the
present paper we apply multigrid methods to the following problems from fluid

dynamics.

Caleulation of potential flow around bodies ~ The total velocity poten-—
tial ¢ is assumed to be the superposition of the potential ¢_ , due to a uni-
form onset flow and a perturbation potential 940 due to a doublet distribution
at the body surface. This approach leads to a Fredholm equation of the second
kind for the unknown doublet distribution. We introduce a multigrid method
which makes use of a sequence of grids, that are generated by dividing the

body surface into an increasing number of smaller and smaller panels. On these
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grids the doublet distribution is assumed to be constant over each panel. For

a two-dimensional (2-D) aerofoil we have applied the multigrid method to the
calculation of circulatory flow around Kiarman-Trefftz aerofoils. The use of
multigrid techniques becomes more preferable for 3-D problems because the num~
ber of panels is much larger than for 2-D ones. The calculations have been per-
formed for the flow around an ellipsoid. From numerical investigations it fol-
lows that * 3 multigrid cycles are sufficient to obtain the approximate solu-

tion. -

Calculation of oscillating disk flow - This application deals with the
rotating flow due to an oscillating disk at an angular velocity £ sin wt. The
Navier—-Stokes and continuity equations are reduced by means of the von Karmin

similarity transformations to

w Q 2 2
(2) = £, =55 £,, + 2hf, £~ + g7,
w = S -
(3) o 3%t T Tp 82z * 2hgz 2fg,
(4) hz = f,

where (f,g,h) is a measure of the velocity vector in a cylindrical polar coor-

dinate system (r,$,z). For a single disk problem the boundary conditions are:
(5) f=h=0,g=sintatz=0; £f=g-=0 for z~+ =,

In reference 3 the author has shown that the periodic solution:

(6) h(z,0) = h(z,2w); g(z,0) = g(z,2m)

can be obtained by implicit finite difference schemes taking the state of rest
as an initial condition. The transient effects have been eliminated by calcu-
lating a sufficiently large number of periods. Using the multigrid method we

do not simulate the physical process, but reformulate the problem (2)-(6) as

(7) (f’g’h) = K(f’g’h)’

where K is a non-linear integral operator. The multigrid method for integral
equations is used to solve (7). For @ = 0.1 w the computational work has been

reduced by a factor 0.1.
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The present paper is based on parts of the Doctor's Thesis of the author
prepared under the guidance of Prof. P. Wesseling of Delft University of

Technology.

CALCULATION OF POTENTIAL FLOW AROUND BODIES.

For potential flow around a two- or three-dimensional body there exists

a velocity potential ¢ satisfying Laplace's equation
(8) Ad=0

with boundary conditions,

(9) gfﬁ-= 0 along the boundary S,
e
where .denotes differentiation in the direction of the outward normal to
S and
(10) $(z) » ¢_(z) for [g| » =,

with ¢_ the velocity potential due to a uniform omset flow. If the flow is non-
circulatory, we have ¢ (g) = U.z, with U the velocity vector of the undistur-
bed flow. Here Uz denotes the usual innerproduct in ]12 or in 113. We repre-

sent the velocity potential ¢ as follows

$(2) = ¢.(2) + ¢,4(2),

with ¢d the double layer potential given by

as_ , ¢z ¢ S,

(1) ¢.(g) = —
d lZ‘C!m—] z

I-m cos(nz,z—C)
= J u(z)

Q

S

where m = 2,3 for the two- and three-dimensional case, respectively and n, the
outward normal to the boundary S at the point z. The doublet distribution u

is such that ¢ satisfies the boundary condition

(12) ¢ (z) = 0,
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where ¢ denotes the limit from the inner side to S. Using the Plemelj-Privalov

formulae (see reference 4) we -obtain the following integral equation

das_ = - 2¢_(z) , zeS.

2-m cos(nZ,Z—C)
(13) u(g) + f u(z) ——————

ﬂ

S
Assuming the boundary S to be sufficiently smooth it can be proven that the
solution of the interior Dirichlet-problem (12) also satisfies the Neumann—

problem (8)-(10) for the exterior of the boundary S.

Calculation of Circulatory Flow around an Aerofoil.

For circulatory flow around an aerofoil one must introduce a cut to make
the velocity potential single valued. The Kutta condition of smooth flow at
the trailing edge can be satisfied if we construct the cut from the trailing

edge to infinity.

u—"" s

We denote the upper and lower side of the cut by s* and é: respectively. The
contour composed of the aerofoil S and the cut is dencoted by S:-S-+S+. Along
the cut there exists a constant discontinuity in velocity potential. The jump
is represented by a constant double layer potential with strength u+ and u
along S+ and S_,respectively. The difference U—"Ll+ is equal to the circula-
tion which is taken positive in clockwise direction.

We can represent the velocity potential by

[

cos(nz,z—c)
[ 200
Ead

U'C +_]_

2m ds

6 (z) z

sT+s+s"

or rewritten

[

(14) $(2) = Ut + 6 (D) + 5 (W= Darg(z,~0)
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where ¢d is defined by (11) with m =2 and z_ is the trailing edge. In this

t

section we denote by arg(z]/zz) with Z,,2, € 1{2 the real value of the usual

function defined by the complex numbers corresponding to z, and zy - The dou-

blet strength along S follows from (12). So far we did not]say anything about

u+ and 4, but we still have to satisfy the Kutta condition. In the present

paper we only consider aerofoils with non-zero trailing edge angle. For these

cases the Kutta condition states that the flow speed must be zero at both

sides of the trailing edge. Let c+ and £ be points at the upper and lower

part of the rrailing edge. The Kutta condition is satisfied if:

pu(z’) >0  for |t -z |0,

(15) ‘
Du(z™) »~ 0 for |z - z

where D denotes differentiation in the tangential direction. Application of

conditions (12) and (15) to (14) yields the following integral equation

(16) (I-K)u + g (u'=u") = g,
with
-1 cos(nZ,Z‘C)
a7 Ku(2) =Tf u(z) ———— ds,
5 | 2~

B(z) = arg(z, %) ,
g(z) = - 2 U-z.

Numﬁrical approach - The contour S is divided into N segments S, such

that S =.U Si and S; n Sj =@ , i# j. The begin- and end-points of the jth

segment are Z._ and z, and are called nodal points. On this grid u is approx-

imated by a pieéewise constant function My and the resulting equation is
solved by a collocation method. The collocation points Ly s i=1,2,..., N,
are taken to be the mid-points of the segments Si' By means of projection at
the collocation points we get N equations. However, we have N +2 unknowns
My, 10 NN, 20t e M u; and g with My,i = My (5;) and uﬁ = uy (g3ze Si),+
so that we need two extra equations. Following condition (15) we replace My

and u; by UN,N and M1 0 i.e.
s
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+
Uy = Uy (Z20)s
am o { TG

where r; and CN are the collocation points which are closest to the trailing
edge at the lower and upper part of S. Let TN be the projection operator de-
fined by piécewise constant interpolation at the collocation points. We have

to solve the following equation
(19) (I-TyK)uy + Ty B (uN’N-uN’l) =Tye.

In aerodynamics the above numerical approach is called a first order panel
method. In reference 5 we have put it in a functional analytic framework.
Assuming the contour S to be sufficiently smooth (except for a small region
near the trailing edge) it was shown that a once continuously differentiable

numerical solution can be obtained by a single iteration
(20) My =8+ (uN’N-uN,l)B + Ky -

Furthermore, it was proven that the operator K is compact on the space of es-—
sentially bounded functions, provided the boundary is sufficiently smooth.
Since aerofoils (inclusive the trailing edge) are not smooth this property of

K does not hold for our application.

Multigrid method ~ The principal aim of this sectiomn is to show that
equation (19) can be solved efficiently by a multigrid iterative process. In
reference 2 we introduced multigrid methods for integral equation (1). The
Jacobi-relaxation was used to smooth the high~frequency errors. Assuming the
integral operator to be compact we were able to prove that the reduction fac-
tors of these multigrid methods decrease as N increases. For our application
this nice property is completely destroyed (see table 1) because K is not
compact. Problems with respect to the convergence of the iterative process
arise in the neighbourhood of the trailing edge. Here the high-frequency er-

rors are not removed by the Jacobi-relaxation:
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2n ué\)”) - T + TNK “gl\)) - 1 8 (1 (v) (v) ;.

Inspection of the matrix corresponding to TNE(TN reveals that the cross—-diag-
onal contains elements of magnitude k-1 + O(1/N) as N+ with k = (exterior
trailing edge angle )/m. This occurrence of off-diagonal elements of about the
same size as diagonal elements explains why Jacobi-relaxation does not work
well. Therefore we apply another relaxation scheme, which we call paired
Gauss—Seidel relaxation. In order to explain this scheme we first rewrite (21)

as follows:

N
u(vH) =g, + Z

N, i i "L

kiﬂ u;\))‘e - B (u(v) - “(Nv)l) for 1 = 1(1) N.

We obtain the paired Jacobi relaxation (PJ) scheme by removing the cross-diag-

onal to the left—-hand side:

(v+1) _ (v+1) _ vy _ (\ﬂ )
MN, i kis "w,;3 g; * z kip U,z 7 Bi(m ~uy )
HJ
for i = 1,2,..., N/2 and j = N+1-i. A similar expression is obtained for

i=j. As a result we have to solve iN systems of equations of dimension 2. Sub-
stituting the new values of Hy.i and My ; as soon as they are available we

3’ 3
obtain the paired Gauss—-Seidel (PGS) relaxation scheme. For i = 1,2,..., N/2

and j = N+ 1-1i we define

v, = {V for i < £ <3,
£i v+l for £ < 1 and £ > j.

We solve simultaneously the following equations

N (vy.) -
évil) Kij “ISI\:]) T ZZ] kig UN,ﬁl -8 (\))N plflvz)
£#]
and
LD e Z . (Vzl) s W™ - L)
MN, ji "N,i &5 it MN,2 PoHN,N T O MN1
K#i
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for i = 1,2,..., N/2 and j = N+1 -1, with v = v for i =1 and v=v+1 for

1 <i < N/2. The matrix elements kij can be easily calculated. Let

Zj—l_',i
b.. = 7 arg ——— >
1J 23-1%1
then
¢ij for i43j ,
k.. =
1] 1 if ¢ll <0,
¢.. +
ool-1 o if 45 >0 .

Let X_ be a short notation for the space Xy of piecewise constant func—
. . . . P :
tions of dimension N_. We introduce a sequence of spaces {Xplp =0,l,.0.,4£}

with N, = 32 2® such that

XO c X] C ... C Xﬂ .

The corresponding projection operators are denoted by Tp. In the context of

multigrid iteration the subscript p is called level.
The calculations have been performed for several Kirman-Trefftz aero-
foils with thickness § = 0.05 and length £ = 1.0. These aerofoils are obtained

from the circle in the X-plane, X = c eiﬁ, by means of the mapping

7= £00 = (x - x)/ (-5,

where y measures the camber and k the exterior trailing edge angle;

e = 2£5+(1yHH N 2ayhHHE
1
X, = e (1) - 4v).

Partition of the boundary on level P: Let the interval [0,2m] be divided
into N_ uniform segments with nodal points {@jlj = Q(I)Np}. The qodal— and
collocation-points in the z- plane follow from f(ce&ej) and f(ce&ej+%), res—
pectively, @j+% being the midpoint of subinterval [@j,0j+]]. The collocation

points defined in this way are situated at the boundary and do not coincide
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with the collocation points of the other levels. Therefore, the elements of
the matrix Kb s, p=20,1,..., £, corresponding to TpK.Tp have to be computed

for all levels. Asymptotically for £ -+« , the number of kernel evaluations is
4
3
lowing testcases:

Nﬁ, when the values are computed once and stored. We have taken the fol-

I. k =1.90 and vy = 0,
II. k = 1.90 and vy = sin 0.05,
III. k =1.99 and vy = 0,
Iv. k = 1.99 and vy = sin 0.05.

The velocity U of the undisturbed flow is taken to be (cos T, sin T) with T
the angle of incidence. For the above testcases we give numerical results for

=0 and t = /2,

Algorithm: The approximate solution of (19) is obtained by the multigrid
method defined in the ALGOL-68 program given in TEXT 1:

PROC mulgrid = (INT p,oc, VEC u,g) VOID:
IF p = 0
THEN solve directly (u,g)
ELSE FOR 1 TO o
DO relax (u,gl; INT n = UPBu;
VEC residu = g—u+K?*u—8p*(u[n]-—u (11);
VEC wum := Op—l’ gm := restrict (residu);
mucgrid (p-1, v, um, gm);
u := u +interpolate (um);
relaxr (u,g)
oD
FT

TEXT 1. Multigrid algorithm,

Because of reasons of efficiency the number of coarse grid corrections
(integer v) must be less than 4. For v = 1 and v = 2 we obtain the so-called
V- and W-cycle, respectively. Here we choose v = 2, For the 3-D problem of

flow around an ellipsoid we take v = 1. The interaction between the grids is
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defined by the procedures restrict and interpolate which are specified as fol-

lows. Let n be the upper bound of VECu, then:

restrict (u) [Z] := 0.5 » (u [2%2=1]+ ul2+*4]1), © = 1(1)n/2,

interpolate (u)[2 x4 ] := interpolate (u) [2x2-1) :=u [Z], < = 1(1)n.

On level 0 the system of equations is solved by Gaussian elimination. For
relax we take: Jacobi -, paired Jacobi - and paired Gauss—Seidel relaxation,
respectively. We start our algorithm on level 0. The interpolation to level p
(p=1) of the approximate solution from level p-1 is used as initial guess of
the multigrid process at level p; truncation occurs when the residual is less
than 10—6. Let VEC gp denote the restriction of g to the collocation points of
level p. In ALGOL-68 notation this algorithm reads:
solve directly (u )s
FOR p TO 3
DO up := interpolate (uo);
FOR Z TO 25 WHILE residual > 10
DO mulgrid (p, 1, up, gp) 0D;

u, = COPY u
0 p

0*90

6

OD;
TEXT 2. Implementation of the full multi-grid algorithm.

In the following table we compare the performance of the multigrid processes
using various relaxation schemes.

From this table we conclude that the multigrid method defined by Jacobi-relax-
ation is not acceptable (it converges too slowly).The process defined by PGS-
relaxation turns out to be the most efficient. Furthermore, we draw the follo-
wing conclusions: 1. the number of iterations decreases as N increases and 2.

on the highest level (N=256) only a few iterations are necessary.
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TABLE 1 - NUMBER OF ITERATIONS

N = 64 N = 128 N = 256
Testcase 7 J PJ PGS J PJ PGS J PJ PGS
I 0 15 4 3 13 3 2 | o1l 3 2
/2 15 9 9 4 7 5 2 4 2
T 0 15 8 8 13 5 5 11 3 2
/2 15 10 9 9 7 6 4 2
11 0 >25 4 3 >25 3 3 >25 3 2
n/2 | >25 12 9 19 9 6 9 6 3
v 0 >25 11 8 >25 7 4 >25 6 4
n/2 | >25 13 10 > 25 10 8 >25 7 3
J - Jacobi , PJ - Paired Jacobi, PGS - Paired Gauss-Seidel.

Calculation of Potential Flow around an Ellipsoid.

The numerical approach to find the solution of (13) is connected with the

shape of the kernel-function. Application of the collocation method in the

space of piecewise constant functions leads to moment-integrals, which consist

of the calculation of solid angles. We consider the ellipsoid defined by

2 2 2
+y + z =1,

£

The velocity of the undisturbed flow is given by U = (1,0,0). The partition
of the ellipsoid into panels is carried out as follows. First we divide the
surface into N rings by planes orthogonal to the z-axis. Next each ring is

divided into N trapeziform segments. The spherical caps are divided into N"
triangle—form segments. We denote these segments by Sij , 1= 1(1)N and
i = 1(1) N”. The collocation points are chosen to be the "midpoints" of these
segments and are situated at the surface. The solid angle subtended at ¢ by

Sijw1th ¢ Sij is given by

203




ds_ .
IZ—CIZ Z

J cos(nz,z—c)

ij
In contrast with 2-D in general these integrals cannot be evaluated analytical-
ly. We approximate Sij by one or two flat planes. The solid angles subtended

by such planes can be evaluated analytically,

Multigrid method — The different grids are related by Np = 4 2P and
N; = 4 x 2P | Putting Bp = 0 we use the algorithm given in TEXT | with v = 1,
Analogously to 2-D we define the procedures solve directly, restrict and <nter-—
polate by Gaussian elimination, weighted injection and piecewise constant in-
terpolation, respectively. For relaxr we take the Jacobi-relaxation scheme.
Assuming the surface to be smooth Wolff (ref.6) has analysed this multigrid
method. He has proven that the reduction-factor of the multigrid process is
less than ch” for h » 0, where h and o are a measure for the mesh-size and

the smoothmess of the surface, respectively. For the ellipsoid a = 1.

NMumerical results - In table 2 we give the residuals and the observed

reduction factors

= D @y ) GED

Ne
1 N N N N
with I . | the supremum norm. We also give the mean reduction factor
K 1/k
n={1T n.}
. 1
1=1

and the operation count expressed in work-units. One work-unit is defined by
(total number of multiplications)/(Nﬂ * Nz fzwith £ the highest level. We only
take into account matrix~vector multiplications and the direct solution on

the coarsest grid for which we count %(NO*NS )3 multiplications. Table 2 en~
ables us to draw the following conclusions: 1. Comparing the results obtained

with £ = 2 and £ = 3 we see that the mean reduction factor of the multigrid
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TABLE 2 — POTENTIAL FLOW AROUND AN ELLIPSOID *
MULTIGRID METHOD (N, = 4, NJ’ = 4)
* *
£=2; N,=16N =16 £=3; Ny=32, 0N =32
iter residual red. factor iter residual red. factor
-1 -2
1 1.17 10 1 4.56 10
2 2.04 1003 4.13 1072 2 4.38 10°% 1.67 1072
3 7.75 107°  1.40 1072 3 8.48 1070 6.98 1073
4 1.89 10°% 4.63 1072 4 9.93 1078 2.56 1072
5 6.54 107°  2.36 1072
mean red. factor: 2.83 10--2 mean red. factor: 1.44 10_2
operation count : 10.68 operation count : 8.53
JACOBI ITERATIVE PROCESS
N =16 N = 16 N=32 , N =32
iter residual red. factor iter residual red., factor
1 1.73 1 2.15
2 8.05 1000 4.51 107! 2 1.20 5.44 1071
3 3.82 1000 4.68 107! 3 6.72 107} 5.57 107!
4 1.83 100" 4.75 107! 4 3.79 107! s5.62 107!
5  8.75 102  4.78 107! 5 2.14 10! s5.64 107!
6  4.20 102  4.79 107! 6 1.21 10" 5.65 107!
7 2.01 102 4.80 107! 7 6.85 1072 5.65 10 |
i i . 8 3.8 102 5.66 107!
: S L . . - .
21 6.94 10 4.80 10 27 7.79 1077 s5.66 10
mean red. factor: &4.77 ]0—] mean. red. factor: 5.64 10_]
operation count : 21 operation count : 27

*

X
A

2

S o4 ¥z

2

1

, U parallel to the x - axis.
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riethod has been decreased by a factor 2, which is in agreement with the theo-
retical results of Wolff (ref.6) and 2. the multigrid method is much cheaper

than the Jacobi-iterative process.

CALCULATION OF OSCILLATING DISK FLOW.

The rotating flow due to an infinite disk performing torsional oscilla-
tions at an angular velocity @ sin w T in a viscous fluid otherwise at rest
involves two relevant length scales : I, the Von Karmadn layer thickness
(i) !/

(v/w)l/z. By means of the Von Karmdn similarity transformations the velocities

, where v is the kinematic viscosity and 2. the Stokes layer thickness

(u,v,w) in a cylindrical coordinate system (r,¢,x) can be written as:

1
u=Qrf(z,t), v=QQrg(z,t) ,w == 2(2vw) /2 h(z,t),
22 . 1/2 : .
where z = CEGB x and t = wt. In that case the Navier—Stokes equations re-

duce to the partial differential equations (2) -~ (4). Apparently the oscillat-
ing disk flow is characterized by the parameter & = Q/w, which determines the
ratio of the Stokes layer thickness to the Von Karmdn layer thickness.

For the high-frequency flow (e< <1) analytical solutions are found in
the literature in the form of series expansions in terms of €. This type of
flow consists of an oscillatory immer layer (i.e. Stokes layer) near the ro-
tating disk and a secondary outer layer (i.e. Von Karmadn layer). Using a
multiple scaling technique Benney (ref.7) was able to find series expansions
valid throughout the region of flow. The first order terms of the solution

are given by:

z/e

—4az

(22) g(z,t) = e sin(t-z/e) , £(z,t)~ce for z+w» |
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with a = 0.265. In reference 3 we used this technique to determine the axial
inflow at infinity up to the term with 53 :

(23) h(=,0) = ae + {ab + g (VI D } e + 0(D),

with b = - 0.207 . Inspection of (22) reveals that problem (2) - (6) is singu-
larly perturbed and for a fixed t the solution contains more and more high
frequency components as € - O,

In this paper we discuss two computational methods to find the periodic
solution satisfying (6). The first method is based on simulation of the physi~
cal process by taking the state of rest as an initial condition and elimina-
ting the transient effects by integration in time. In mathematical terminology
this process can be interpreted as Picard's method for computing a fixed point.

Let the velocity vector be:
v = (f,g,h).

Denote by (v(z,t); VO) the solution of the usual initial-value problem (2)-
(5) with initial data:

(24) v(z,0) = Uo(z).

Assume that the initial data Yo belong to a suitable class L. Define a map of

L into itself by the equation
(25) Ke(VO) = (v (-,2m); UO) >

being the solution of (2) - (5) and (24) at t = 2w. Since (2)-(4) is a parabolic
system Ke may be expected to have a smoothing influence, just as the integral
operators of the Fredholm equations studied in reference 2. In operator nota-

tion simulation of the physical process is written as the Picard sequence
(26) Vigr = Ks(ui) with Vo = 0.

The periodic condition (6) rewrites as
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(27) v = Ke(u), ve L.

We remark that Ke is a non-linear operator., For e <1 (26) converges slowly.
Therefore we have devised another method. Since equation (27) has a superfi-
cial resemblance with a Fredholm equation of the second kind we have applied

a multigrid method to (27).

Numerical Approach

This section is divided into two parts: 1. the numerical solution of the
initial-boundary value problem (2) - (5) with the initial data (24) and 2. nu-

merical methods for finding periodic solutions satisfying (6).

Discretization of the initial-boundary value problem - Consider the par-
tial differential equations (2) —-(4) with the boundary conditions (5) and the
initial data (24). To this problem we apply implicit finite difference tech-
niques in combination with an appropriate stretching function for the construc—
tion of the computational grid. In calculations the boundary conditions at

infinity are applied at a finite value z = £:

(28) f(L,t) = g(£,t) = 0.

We want to resolve the flow structure near the disk with a limited number of
mesh points. Therefore, taking into account (22) we transform the z-coordinate
by:

(29) z(x) = K(ex-+(l—e)x3) . xel0,1],

and we take the mesh covering of the new range 0<x <1 uniform with stepsize

Ax = 1/N. Integration in time is done by the Euler-backward formula:
+1-% ,
8¢ = ~——£7;———— ,2with At = 27/T ,

The right-hand sides of (2) - (3) are discretized by central differences at

t = . The left~ and right- hand side of (4) are integrated by means of

sl
the mid-point and trapezoidal rule, respectively. The resulting non-linear

system of finite difference equations is solved by means of Newton iteration,

208



which is terminated if the residual is less than 10_6. For further details

see reference 3.

Numerical methods for computing periodic solutions — Using the above finite
difference approach we define the discrete counterpart of the operator K€ and

the velocity vector v by K and Y respectively. In discrete operator

e; N,T,L
notation the periodic condition reads:

In the present paper we propose two computational methods to solve (30) : A.
simulation of the physical process by Picard iteration and B. a multigrid
method. In the first method the parameters e, N, T and £ are fixed. In the
second method the parameters N and T are taken from a sequence {(Np,Tp)},
p=20,1,...,L such that with p = L we have NL = N, TL = T and with p <q =L
we have Np < Nq s Tp < Tq (i.e. a smaller p corresponds with a coarser discre-
tization).

A. Simulation of the physical process: We take the state of rest
(Uéo) = 0) as an initial condition. The transient effects are eliminated by

Picard's method:

MEE DI (i),

(31) N e;n,T,2 VN

The iteration index i counts the number of periods that is calculated. This

process is truncated if the residual | U(l) - K (vt is less than
" N g;N,T,£ ‘"N

0.5 10 . Here

tul = max | g. |+ max | h,
0<jsN 0<j<N

B. Multigrid method: We introduce a sequence of grids with NP= 20 x 2P

and Tp = 8-*2p. The integer p is called level, We replace the subscript pry P

v = v and K = K .
Nb P €3 Np,TP,K £3P

Denote the velocity at grid point xj on level p by Up il = (fj,gj,hj). The
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addition vp £3]1 + UP (k] and the multiplication ¢ * Up [j] are defined as usu-
al (element by element). The interaction between the grids is defined by piece-

wise~linear interpolation:

, .4 _ o Urj/2y, . . j =0,2,..., 2N,
interpolate (U) [3] = { 0.5*((1[;_“2“_1_] + U[i—z-]—]),j = 1,3,..., 2N-1,
and by injection:

. . . . N
restrict (WHLid=01L23], 3 =0,1,..., 7

where N is the upper-bound of the velocity vector U.

We use a multigrid method that starts on level 0 with simulation of the
physical process (method A). For small values of ¢ we apply continuation. Sup-
pose we have the following e-sequence {eﬂ leo > €y Te.e> e with €y = 1} . At
each stage of this continuation process we approximately solve the equation
Vg = K€£ ;0 (vg) by (31) until the residual is less than 0.5 10-3. As initial
guess of (31) we take the solution of the previous stage (€=€£_1). For e = €
we take the state of rest. Denote the solution of this continuation method by
Yo (eo,el,...,em).

Since (30) is a non-linear equation it is only solved approximately. Let

Up be an approximation to the solution vp of (30) on level p. We define the

defect of Up by

The multigrid method is given by the ALGOL -68 program in TEXT 3, where VELO

is a mode for the vector of unknowns:

MODE VELO = STRUCT (VEC f,g, h) .

PROC compute periodic solution = ( #to level ¥ INT £) VOID:
(U0 i= uo(so,e],...,em)‘
FOR § TO X
. ¢= . - K . u. - ;

DO d,;—z : UJ_'-Z "e;g—z (J_l)

Uj_:= interpolate (uj—l);

miltigrid (j,J,Uj,Oj)
oD
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PROC multigrid = (INT m, o, REF VELO U, VELO y) VOID:
(IFm =20
THEN FOR k TO 50 WHILE residual > 5€
DO VELO h = y - U + Ka;m uy;
residual := lall;
u:=4us+ Wy, *
oD
ELSE FOR © TO ¢
DO U :=y + Ke;m (s
VELO d==dm_1—restrict (y—U-+K€;m(U));

VELO v := COPY U
m—1;

multigrid (m-1,2, v, d);
U := U+ Interpolate (U _; ~ V)
oD
FT

TEXT 3 Multigrid algorithm for the computation of periodic solutions of

parabolic equations.

The structure of this multigrid algorithm has been proposed by Hackbusch

(ref.8) for the numerical solution of general time-periodic parabolic prob-

lems. Here we apply it to the particular problem of oscillating disk flow.
On level 0 of multigrid we use overrelaxation for extremely small val-~

ues of €. The parameter w, takes the values 1,2 and 4. Initially we put

k
wy = 1. If the axial inflow converges slowly it is multiplied by a factor 2.
As soon as the residual increases the value W = 1 is restored.

Numerical results — From Zandbergen and Dijkstra (ref.9) it is known
that Von Karmdn's rotating disk solution can be represented sufficiently ac-
curate with £ = 12, hence we fix infinity at this value. We give numerical
results for the following values of € :

= 0.1, e, = 0.05.

1 » & 3
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This sequence is also apwlied in the continuation process that is used to

find an approximation UC of the multigrid method, e.g. for € = 0.1 we have

UO = v, (1, 0.5, 0.1). For N = 160 and T = 64 we compare the performance

of simulation of the physical process (method A) and the multigrid method (B).
On the coarsest grid the latter method needs 20 stepsizes in space and 8 step-

sizes in time; hence it uses four levels: 0,1, 2 and 3.

Let a work unit be defined by the computational work needed for cal-
culating one Picard iterate with N = 160 and T = 64. In table 3 we compare
the computed axial inflow at infinity with the value of its asymptotic ap-
proximation (23) for e - 0. Between parentheses we give the number of work

. . . " - " . -
units and the iteration error UN Ks;N,T,2,<uN) , where UN is the final

solution,

On level 0 of the multigrid method we used Picard iteration (i.e. wkE 1)
for € 20.1. The iterative process was terminated when the residual was less
than 5€ = 0.5 10*4. For ¢ = 0.05 we have applied overrelaxation (1< w, < 4)

7

and we have put 60 05 = 10 . That is the reason why the computational work

increased for this case.

TABLE 3 AXTAL INFLOW*

€ method A method B (23)

1.0 0.2014 5 0.2014 ~7 0.2360
( 8, 4.4 10 7) (6.8, 9.3 10 ")

0.5 0.1177 -5 0.1178 -6 0.1253
(17, 4.7 10 7) (7.0, 3.9 10 )

0.1 0.0236 s 0.0271 -5 0.0262
(74, 4.9 10 7) (7.4, 1.6 10 7)

0.05 0.0083 s 0.0137 -6 0.0132
(72, 4.9 10 7) (12.5, 3.3 10 )

* Between parentheses : number of work units, residual.

From table 3 we conclude that the multigrid method becomes more effi-

cient as & decreases. For £ = 0.] the computational work has been reduced by
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a factor 1/10. For ¢ = 0.1 and € = 0.05 the numerical results of method A
still contain a low—frequency error. In this case the test for termination
of the physical process is not adequate. The process converges slowly, as
can be seen from figure 1, in which we have displayed the axial inflow as

a function of the number of periods. For e = 0.05 the axial inflow is still
increasing after 72 periods. The same phenomenon occurs on the coarsest grid

of the multigrid method. Therefore we have applied overrelaxation.

=0.5

T 0.2 A e=1.0 -
h (e, 2mk) /e -
e=0.05
0.1 - L
. 30 o 7T da : 0

—>k (= number of periods)

FIGURE 1. Dependence of the axial inflow on the number of periods

The results of our analysis are given in figures 2-3. The profiles of
the variables f/e , g and h/e are displayed in figure 2. We see that there
is an oscillatory boundary layer. For smaller values of e (see figures 2
(c-d)) the azimuthal component of velocity (g) is confined to this boundary
layer and the radial and axial component of velocity (resp. £ and h) persist
outside this layer. The results for the quantities ¢ gZ(O,t), fz(O,t) and
h(=,t)/e are displayed in figure 3. Comparing these figures we see that the
fluctuations in h(x,t) decrease as € » Q. This means that outside the boun-
dary layer the £fluid motion becomes stationary (i.e. the outer flow does
not depend on t). These numerical results are in agreement with the analyt-

ical solutions of Benney (ref.7).
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Finally, from the results just presented we conclude that for the com-

putation of periodic solutions of the single disk problem for € <1 the multi-

grid method is preferable, whereas for e >1 simulation of the physical pro-

cess may be employed.
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GENERAL RELAXATION SCHEMES IN MULTIGRID ALGORITHMS
FOR HIGHER ORDER SINGULARITY METHODS

B. Oskam and J.M.J. Fray
National Aerospace Laboratory, NLR

SUMMARY

This paper describes relaxation schemes based on an approximate and
incomplete factorization technique (AF). These AF schemes allow one to con-
struct a fast multigrid method for solving integral equations of the second
as well as integral equations of the first kind. Novel items are the smooth-
ing factors found for integral equations of the first kind, and the comparison
with similar results for equations of the second kind. Application of the MG
algorithm shows convergence to the level of the truncation error, of a second
order accurate panel method, within 2 multigrid cycles.

INTRODUCTION

Most effort going into the application of multigrid techniques seems to be
directed to solving the sparse systems of difference equations associated
with partial differential equations. However, the multigrid technique can also
be used advantageously to solve the nonsparse systems of equations that arise
from integral equations, as shown in references 1 and 2.

In the present paper we study the application of multigrid techniques to
the solution of integral equations associated with potential flow problems.
This effort fits into the larger framework of the development, at NLR, of a
next generation singularity or "panel' method. A gquestion associated with this
development is whether singularity methods do have a future, particularly in
view of the current progress in finite difference methods. Reference 3 contains
several arguments for a positive answer to this question, but at the same time
presents the rather stringent requirement of high computational efficiency.
The scope of the present investigation is limited to the analysis of multigrid
(MG) technigues and the subsequent application to some model problems in two
dimensions. Various relaxatlion schemes, which are used as smoothing operators
in multigridding, are evaluated.For some particular geometries, such as an
unbounded flat plate and a circular cylinder, this smoothing problem is ana-
lyzed by the local mode analysis of reference 4. For more complicated geome-
tries, such as an airfoil, it is found that the finite-dimensional, discrete
Fourier transform can be used to define a global smoothing factor which repre-
sents an upper bound of the actual convergence factor of the high frequency
components of the residual vector. A general multigrid algorithm is described
and applied to solve the potential flow problem of multicomponent airfoils.

Before starting the discussion of the integral equations it is important
to realize that the asymptotic operation counts remain of the order of n“ if
nothing is done to reduce the work associated with the residue evaluations
which involve a full matrix times vector multiplication. Multigrid methods to

217



lower the computational work involved with these residue evaluations are cur-
rently being studied at NLR, see reference 3. The basic concept is to lower
the asymptotic operation counts by treating the far field connections on a
sequence of coarser grids without compromizing the truncation error. These
aspects of a next generation panel method are however outside the scope of the
present paper.

INTEGRAL EQUATIONS

Most panel methods use the boundary condition of zero-normal-velocity on
the surface of the contour to derive an integral equation for a distribution
of surface sigularity, source or doublet, over the body surface. Lgt us dgnote
the source and doublet strength by ¢ and u, respectively, and let Xy and x
be the positions of the points p and q. The normal velocity at the point p
induced by distributions of these singularities may be represented as

s ,~ _ 1 [ > o _ >
v (xp) = o olx,) anp(lnlrpql)dSq, (1)
and
d >y - 1 >y o 9 >
) = e G & el Das (2)
p q
where r = ; —x and ng 1s the outward normal, and direction of the doublet

axis, a% the point q. The normal at xp is denoted by np.
The integration variable s is the distance measured along the contour.

Attention is directed to two particular panel methods which may be formu-
lated by employing egs. (1) and/or (2). The first is the surface source method
having an unknown source distribution on the body surface and an auxiliary dou-
blet distribution of known shape but unknown magnitude, also on the body sur-
face, to produce the 1lift, see reference 5. The second panel method considered
employs equation (2) only and is called the doublet method, e.g. see reference
6. The reason these two methods have been employed in the present paper is
that they produce quite different integral equations, being of the first and
second kind for the doublet and source method respectively.

To facilitate the discussion of various discretization schemes we rewrite
equation (2) for the particular case of an unbounded flat plate as

+ oo
2
d 1 d
vn (X) = -2-; Jr ‘d—.;'g lan—EI dE
—+co +o0

f
5 | dBamiee) - L (HE) )

- -0

where x, £ is the distance measured along the plate.
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DISCRETIZATION OF INTEGRAL EQS

The aerodynamic influence coefficients are evaluated using a consistent,
small curvature expansion of the integrals that remain after discretization,
see Hess (ref. 7). Specifically, the profile curve that defines a two-dimen-
sional body is approximated by a piecewise gquadratic representation and the
source, doublet distributions are approximated by piecewise linear, quadratic
representations, respectively. These choices result in aerodynamic influence
coefficients (AIC's) of second order accuracy in h, where h is the panel size.

Let the doublet representation for the case of an unbounded flat plate
be given by

) = (3‘;) (-5,) + (i—g) Leg)?,  Jegled. )

For the purpose of studying the dependency of the smoothing factor on the
discretization scheme the derivatives in equation (4) have been discretized by
3-point differences

\ _ 2

J = (u . -2us + w 1)/h , (5)

(du) _ e
\ae ).~ (ujyqmuy_q)/o0 and e i+17Mg T

i

and by 5-point differences, resulting from a continuity requirement of H across
panel edges,

(du) _
\dg/i— (“tjyp * TOMj =10B; 4 *+ 1y 5)/16 h (6a)
and
2
(a6 _ 2
2] ~ (Hgpp *8ug g =Thuy + Buy -y o)/h b5, (60)

vhere yu i is the value of the doublet representation Y at £ ., which is the
midpoint of panel with index i. For the case of the flat plate all panels have
equal s1ze h. The difference between the 3-point and 5-point representations,
u3 D and. u5 D respectively, turns out to bve

2 3 2
Top = Vyp = B () (eep) + 4 (&2 ‘;) (e-£,)%, ()
P P ag3's g

which is of the same order in h as higher order terms neglected in equation
(4). Thus the 3- and S5-point differences both result in a doublet representa-
tion of third order accuracy in h. Both representations have sufficient conti-
nuity at the panel edges such that the contributions of the second and third
integral in equation (3) may be neglected, being not larger than the basic
truncation error of the first integral in eq. (3).
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Evaluating eq. (3) at panel control points, after substituting eq. (k4),
results in a system of algebraic equations

+oo
Vo () = o kz_wak Myps o i=wy =, (6)
where
a, =k ln [1+32 k/(2k—3)(2k+1)3[+-% 1n|1_8/(hk2_1)|, (9)
or

21

g 1n |1-8/(hk2_1)(

'%g In|1+16/(L k2—25)[ +

=

+ %-k 1n|1_8k/(hk2+k_15)] +2 k 1n| 148 k/(hkg-uk-3)|

+ %-k 1n|1-2/(2k+1)|. (10)
Equation (9) represents the AIC's resulting from the 3-point differences in
eq. (5) and the AIC's of eq. (10) correspond to S5-point differences (eg. (6b)).

For the case of a curved contour, such as an airfoil, we need a small
curvature expansion of the integrals as mentioned before. Moreover we will
take a nonuniform panel distribution. The resulting expressions of the AIC's
will not be presented here for the sake of brevity. However it should be
mentioned that the AIC's of the doublet distributions are based on a third
order accurate representation y, requiring continuity of u across panels
edges, which involves a generalization of the 5-point differences in eguation
(6) to nonuniform panels.

The resultant linear system of algebraic equations may be written as

n+n
< ¢
/., By5 Uy = f., 1=1,2,...,(n+nc), (11)
J=1
where n is the total number of surface panels and n, the number of components
of a multicomponent airfoil. The unknown parameters u; for j = 1,,..,(n+nq)
denote 0j(Jj =1,2,...,n), c¢j(j =1,...,n_) for the source method, where o. is

the value of the source representatlon at control point ¥: and c: the
magnitude of the auxiliary doublet distributions of component j. In case of
the doublet method'uJ(J =1,2,..., ntn_) denotes uj(j =1,2,...,0),

uJ(J =1 nc), where % is the value of the doublet representation at control
point xJ and uJ the value of the doublet representation at the endpoint of the
integration interval of component j. The value of the doublet distribution at
the beginning of each integration interval is equated to zero without any loss
of generality. The ordering of the equations {(11) is such that the diagonal
elements aji of the first n equations express the influence of a parameter v.
at the control point xi. The last n. equations of system (11) express the

Kutta conditions at the trailing edges of the airfoil components j(j=1,...,nc).
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An example solution of the source method applied to a 12 percent thick
von Kérmén-Trefftz airfoil with a trailing edge angle of 15 degrees (KT0012)
is shown in figure 1. Second order convergence of the n-dimensional vector
norms of the error in the tangential velocity component of this solution is
found, see figure 1.

RELAXATION SCHEMES

The relaxation schemes, also called smoothing operators in MG algorithms,
exploit,.the behavior of the kernels of equations (1) and (2), being like 1/r
and 1/r", respectively, where r denotes the distance. This behavior tells us
that the high frequency components of the singularity distribution have a
short coupling range. Neglecting the far field connections between parameters
and control points should, therefore, be a sound basis for constructing effec-
tive smoothing operators.

On the basis of this consideration we will present two basic classes of
relaxation schemes. The first class of schemes is based on incomplete LU
factorization (ref. 8) of the approximate system of linear equations that
remains after omitting the far field connections, resulting in an approximate
factorization (AF). The factors L and U of the LU factorization are forced to
have an extensive zero pattern by omitting the nonzero entries which may arise
outside of the intended nonzero pattern in the factors L and U during factor-
ization. The present AF scheme is different from the incomplete factorization
of algebraic equations associated with the discretization of partial differen—
tial equations because there is no need to omit any far field connections in
the latter. Moreover the extensive zero pattern in the lower and upper trian-
gular factors need not be the same as the zero pattern of the approximate
system of linear equations that remains after omitting the far field conneec-
tions, although we have chosen these two patterns identical in the present
examples.

A second class of relaxation schemes is based on the direct construction
of a sparse, approximate inverse. We may construct such an inverse if we
approximately satisfy each individual equation of system (11) in its turn by
directly solving a very small system of equations, comprising a subset of the
entries of the full system, for every unknown parameter. These small systems
should be chosen such that they include the coupling range of high frequencies.
Thus we relax each equation individually, distributing changes to its neigh-
boring parameters. This second class, which we will call natural relaxation
schemes (NRS), is also a general technique. An example of this technigue is
given in the next section.

FOURIER ANALYSIS

Let a relaxation scheme based on approximate factorization of equation
(8) pe defined by

-n -1
Ny, a o
< v
:} G e /> (v) _ ; (v) (12)
A i 7 a4 Mg _d SgMk+i
k=-n k= k=n_+1
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where the superscript v is the iteration index and f. the right hand side
which is given. The pattern of far field connections which are neglected in
the approximate equation on the left hand side of equation (12) is denoted
by the integers k satisfying ikl > ng. This zero pattern also applies to the
factorization. The convergence factor p of the 6 component, defined in refer-
ence 4, of the error in the solution during the iteration procedure (12) is
found to be o

; Na,

o(0) = |2 /| a, cos (k6 )| NI

k=T+n_ lao +2 / a, cos (x8)|, (13)
k=1

where the second summation term is to be omitted for ny = 0. This convergence
factor as function of the frequency © is shown in figures 2 and 3 for n_ = 0,1,
2 and 4. It is seen that the convergence of the high frequencies, i.e. 8
o > -"21, is of the order of 10-2 for n_ 3 1.

The second relaxation scheme (NRS) for equation (8) is based on a sparse
inverse, a s which is defined by

E% =0 for |k| > n, and E£=gk for |k| s n, (1k)

where &y is the solution of

o
; 8 g = 8. for i=—na,..., n s (15)
J—-n

with k=|j—i| and 850 = Kronecker delta. Applying this approximate inverse Ek
in a residual correction iteration process, see appendiXx, results in an error
amplification matrix given by‘I—AA The matrlx AA denoted by B, is an infi-
nite, symmetric Toeplitz matrix because A and % are infinite, symmetric
Toeplitz matrices. This observation allows one to obtain the convergence fac-
tor implied by this NRS scheme, similarly to equation (13). One finds:
o
—

0(8) = | 1_bo —21{:1 bk cos (k6) l, (16)

where by are the elements of B = AA. Tt may be verified that equations (13)
and (16) are identical for n = 0. The local smoothing factor p is defined in
reference 4 by

RN IR 0L (1)

It is a significant measure by which the relative merits of equations (13)
and (16) may be judged for ng > 1. Values of p for ng = 0, 1, 2, 4 and 7 are
given in table 1, for both the 3~ and 5-point difference schemes. It may be
seen that the smoothing factor of the AF scheme is considerably better than
that of the NRS scheme. Comparing the 3- and 5-point differences shows that
in case of the AF scheme the 5-point differences result in a lower smoothing
factor for o, z 1.
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Applying the source or doublet method to the parallel flow around a cir-
cular cylinder (no lift) results in a symmetric, circulant matrix eq. (11),
which is denoted by ¢ (k=0, 1, 2,..., (n-1)), provided we use uniform paneling.
The convergence factor of the errors in the solution during the iteration
procedure (12) applied to these circulants is found to be

n/2-1

n
—' a
p(ﬁi) = | Cy /o +2 2? ¢, cos (keii&/ ~
k=1;ﬁa _ |co + 2 élf ck cos (kei)I, (18)
where the discrete frequencies 6. extend over 2wi/n, i=0, 1,..., n/2. This

equation (18) turns out to be id&ntical with equation (13) in the limit of

n -+ «, The smoothing factors obtained from eq. (18) for the doublet method,
as shown in table 1, reflect this observation. For the source method the
smoothing factors obtained from eq. (18) are given in table 2. These factors
tend to zero in the 1limit of n going to infinity, which is characteristic for
"MG algorithms of the second kind".

Although the results obtained above do give valuable insight in the
smoothing properties of relaxation schemes, the local mode analysis cannot
take the effects of such practical things as surface slope discontinuities
and/or nonuniform paneling of the surface into account. A n-dimensional,
discrete Fourier transform of the residue amplification matrix I-AA, see
appendix, given by

G =F (I-AR) 7', (19a)
F=f _ = /j?exp [i 27 kl/n] k,1 =0, 1 (n-1),(19Db)
kl \/ n 2 -] 3 e e ,

-1 * .
F~ = F (the complex conjugate), {19¢)

1s more suitable to study these aspects of the smoothing problem. The matrix
A in equation (19a) may either be an actual inverse (NRS) or the implied in-
verse of an AF scheme. Let the row sum of G be defined by

n-1
. =1£o | 6l k=0, ..., (n-1), (20)

This row sum can be shown to be an upper bound of the convergence factor of
the Gk component of the residue vector in a residual correction iteration
process, where 6x = 2nk/n occupies the unique part of the frequency range for
k =0,1, ..., n/2. These considerations allow us to define a global smoothing

factor X by
max Ak s (21)
n/4 <« k¥ € n/2

analogous to the local smoothing factor (eq. (17)). It should be noted how-
ever that this global smoothing factor is only an upper bound of the conver-
gence of the high-frequency components because the transformation in egs. (19b)
and (19¢) results in a matrix G which is not diagonal, the off-diagonal ele-
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ments representing the coupling of differing frequencies.

The global smoothing factor of the AF scheme applied to the source and
doublet method for the KT0012 profile (see fig. 1) has been determined using
a Fast Fourier Transform algorithm. The particular AF scheme used is charac-
terized as before by the far field connections omitted from equation (11) and
the subsequent zero pattern forced onto the incomplete LU factorization of the
resultant sparse matrix. These two sets, the far field connections a.. and the
zero pattern, are defined by the pairs of integers (i,j) satisfying

li-3| > n_ and |i+j-n-1]| > n and i < n and J < n. (22)

Table 3 gives the computed global smoothing factors for n = 32, 64, 128 and 256
and for ng = 0, 1, 2 and 4. From this table the following conclusions are
drawn. The smoothing improves as the dimension of the nonzero pattern ng is
increased. There is no qualitative difference between the source and doublet
method, the smoothing factors being approximately independent of the number of
panels. This is expected of the doublet method, but the source method results
are qualitatively different from those of table 2. Numerical experiments sug-
gest that this gualitative difference is a direct result of the surface slope
discontinuity at the trailing edge.

The similarity between the source and doublet method may also be observed
from the results plotted in figures U4 and 5 where the row sum Ay is shown as
function of frequency, for ng = 0 and 1. In case of ng = 1 a typical smoothing
character 1s observed, i.e. the convergence bound Ak decreases with increasing

frequency.

MULTIGRID ALGORITHM

The multigrid algorithm is described by the following quasi-FORTRAN T7
program, see also reference 9:

. A )
SUBROUTINE MG (i, &, u , r , p, m, q)
INTEGER p, g
it (2) =i$k=ﬂ,
1 IF (k. EQ.1) GOTO L
2 CALL SMOOTHING (r%, uf, p)
rk-1 = RESTRICTION (rk)
k=k~1 $ u5=0 $ it(k)=m
GOTO 1
4 CALL DIRECTSOLVER (r
5 IF (k.EQ.%) RETURN
k=k+1
k k-1
Suk = PROLONGATION (u )
rE=rK_ pK suk g uk =uk 4+ guk
CALL SMOOTHING (r", u®, g)
it (k) = it (k) -1
IF (it (k). EQ. zero) GOTO 5
GOTO 2
END 'OF MG' -
SUBROUTINE SMOOTHING (r, u , pq)
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INTEGER pq

DOk1 I=1, pa

su RELAXATION SCHEME (r )

rk = rL AK 8k $ uk = ok + suk
1  CONTINUE

RETURN § END 'OF SMOOTHING'

One call to subroutine MG (i, 2, ug, rl, p, m, q) performs i iterations
of the basic multigrid cycle where & is the number of levels, k (=2, ...,1),
uf the initial solution at level % (taken equal to zero in the present exam-
ples) and rf the corresponding residue at level &. The parameters p, q and m
specify the multigrid strategy, m being the number of times the coarse level
correction is entered consecutively.

The only operators that remain to complete the description of this MG
algorithm are the restriction, prolongation and coarse level equations Ak

Let a panel distribution on level 2 be denoted by hi (i=1, ..., nl), where
h is the panel length and n® the number of panels. Define the coarse levels
recursively by

k-1 _ 1 k k-1 _ .k kK . k-1
n =3n and hi =h, ¢+ h2i (i=1, ..., n ).
Let the restriction operator ng (i=1,..., (nk_1+nc), S I (nk+nc)) and the
. k . .
prolongation Pij (i=1,..., (nK+n_ ), j=1,..., (n¥-T4n.)) be defined:
- . . . i+
B, = 155 for J=1,...,nk with i= TFIX (421 (23a)
1] J 1 2
Rﬁj =1 for j= (a%+1),..., (0" ) with j= o (23b)
. . . i+
Pﬁj =1 for i=1,...,n5 with j= IFIX (iEl) (23c)
ng =1 for i=(nk+1),..., (nk+nc) with j=i-nk_1 (234)
R?j = ng = 0 for all other pairs of integers (i,Jj) (23e)

If we let the fine level equations be given by equation (11) and be de-
noted by Ag, then we may define the coarse level equations recursively by
(see ref. 10)

A% o gE pK Pk, (2k)

which choice has been motivated by the results of Wesseling (Ref. 11), who

found the Galerkin coarse grid approximation (eq. 24) to be better than coarse
grid discretization of the continuous problem.
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MULTIGRID CONVERGENCE

In this section we illustrate the convergence characteristics of the MG
algorithm described above by applying it to a number of potential flow problems,
restricting ourselves to the source method and the AF scheme.

The first example pertains to the KT0012 profile, shown in figure 1,
placed in a uniform flow and at an angle of attack of 20 degrees. The AF scheme
used is characterized by the logical expression (22). The convergence history,
the norm L_ of the residue as function of the number of fine grid residue
evaluations, is shown in figure 6 where we have chosen n = 32, £ =2, p = 1,
q= T, m = 1. Here we have defined

Lm(rz) = ] r*(v) llj///
Z1 et =0y [, (25)

being the ratio of the maximum norm of the current (v) residual vector rﬁ and
the maximum norm of the initial (v=0) residue, i.e. the right hand side of
equation (11). The observed convergence factor in figure 6 is about twice as
good as the global smoothing factor, which represents an upper bound of the
convergence factor of the high-frequencies obtained from a one-level analysis.
These findings indicate that X is a rather conservative estimate, although it
is very realistic with respect to the effect of the nonzero pattern n_

Increasing the number of levels to 5, see figure 7, does not change the
asymptotic MG convergence rate, although the initial convergence improves
somewhat. Using the AF scheme as a classical iteration procedure (fig. 7), i.e.
omitting the coarse level corrections, is found to be gquite ineffective as
should have been expected from the Fourier analysis.

Let us define the computational work associated with one residue evalua-
tion at the finest level as work unit, in order to be able to compare various
multigrid strategies. Results are given in table U4, indicate costs ranging
from 2.0 to 2.7 work units per 10~! reduction in the maximum norm of the
residual vector over a range of strategies p, g with m = 1. Convergence to the
level of the truncation error ig obtained within 2 MG cycles. MG strategies
with m = 2, 1.e. entering the coarse level correction two times consecutively,
are found to be computationally less efficient, see table L.

The second example 1llustrates the convergence of the MG algorithm when
applied to the problem of a wing plus flap configuration shown in figure 8. The
convergence history is shown in figure 9. It is observed that the AF smoothing
is quite effective for n_ > 1, although we have just repeated the nonzero

. a . . . . : . .
pattern for single-component airfoils given in expression (22) by applying it
to each submatrix corresponding to the wing alone and flap alone for (i,j) g n.
No zero entries for i1 > n or J > n have been created. This zero pattern, which
neglects all connections in the matrix between wing and flap for (i,j) < n,
results in acceptable AF smoothing for a gap of 2.6 percent. However in the
limit of vanishing gap size for a fixed paneling we would, of course, have to
take some nonzero entries representing the flap/wing connections into account
if acceptable AF smoothing is to be retained in this limit, as has been con-
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firmed by numerical experiments. These observations clearly lead to the re-
quirement that all near field connections have to be taken into account during
the construction of a particular AF smoothing scheme.

CONCLUSION

Approximate factorization (AF) relaxation schemes provide a smoothing
capability that allows one to construct a fast multigrid method for solving
integral equations of the second as well as equations of the first kind.

The local mode analysis of Brandt (Ref. 4) is applied for the special
cases of an unbounded flat plate and circular cylinder and predicts the gual=
itative difference between multigrid problems of the first and second kind,
where the former has a smoothing factor independent of h and the latter a
smoothing factor proportional to h. For more realistic geometries, having
surface slope discontinuities such as airfoils, Fourier analysis predicts no
qualitative difference between smoothing factors obtained with the AF scheme
when applied to integral equations of either the first or second kind,

Numerical experiments show that convergence to the level of the truncation
error of a second order accurate integral method can be obtained within 2 MG
cycles.
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APPENDIX

Let a residual correction iterative scheme to solve the matrix equation,
Au = f, be given by
<+ ~
Gu(v 1) =Ar (v)’ (A-1)

G ) (o)

, (A-2)
and r(V+1) - r(\)) _ Gu(v+1), (A-3)
with the iteration index v (=0, 1, 2,...). Setting the initial solution u(o)

equal to zero results in an initial residue r(0) equal to the right hand side
f. The column vector sul(v+1) is the correction to the approximate solution
u(v) and ¥ is an approximate inverse of A. This inverse is either constructed
(NRS scheme) or implied by the AF scheme. For the latter case we have

%= (L)~

This iterative scheme results in an error amplification matrix, Me’
defined by

u(\)+1> -u - uy), v=0, 1, 2,..., (A=L)

which reads: M
defined by

I - AA. The corresponding residue amplification matrix,

r(V+1) = Mr r(v), v=0, 1, 2,i.., (A-5)
is equal to: Mp =1 - AR. In case A and & are either circulant matrices or
inifinite Toeplitz matrices one finds EA = AKX and Mg = My. For a more general
matrix A resulting from the airfoil problem, equation (11), we have chosen to
analyze the residue amplification matrix M,. The choice of the zero pattern
(22) in the AF scheme when applied to the (n + n.)-dimensional matrix equation
(11) results in & n-dimensional matrix Mr = I - AR.
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TABLE 1.- THEORETICAL SMOOTHING FACTORS FOR DOUBLET METHOD
WITH NORMAL-VELOCITY BOUNDARY CONDITIONS

Unbounded flat plate Cire. cylinder
b
3-p§2§ 5—p( ) 3-p, . 5-p 5-p 5-p
NRS NRS ar (@) AF AF AF
eq.(16) leq.(16) eq.(13) eq.(13)]| eq.(18) | eq.(18)
n=512 n=128
ng =0 0.415 0.797 0.415 0.797 0.795 0.790
ng =1 0.406 0.534 0.163 0.0227 0.0232 0.02L49
ng =2 0.321 0.421 0.0kLo2 0.0251 0.0252 0.0255
ng =4 0.261 0.326 0.0156 0.0102 0.0102 0.0103
ng =7 0.202 0.256 0.0052 0.0037 0.0037 0.0037
i 3-point differences
o S5-point differences
a Natural Relaxation Scheme

TABLE

Approximate Factorization

TABLE 2.~ THEORETICAL SMOOTHING FACTORS FOR SOURCE METHOD
APPLIED TO CIRCULAR CYLINDER [equation (18); na=0]

3.- GLOBAL SMOOTHING FACTORS OF APPROXIMATE FACTORIZATION (AF)

n=128

n=256

n=512

0.00792

0.00397

0.00199

FOR SOURCE AND DOUBLET METHODS APPLIED TO KT0012 PROFILE

SOURCE METHOD DOUBLET METHOD (5-p)
n= 32 6h 128 | 256 32 6h | 128 | 256
ng =0 1.35 1.36| t.351 1.34 | 1.751 1.83] 1.87| 1.89
Dg = 0.49 | 0.54| 0.55( 0.56 {0.29] 0.24 | 0.22] 0.23
Ng = 0.32 ] 0.36]|0.34§0.38]0.24] 0.23|0.2210.22
ng =4 |0.19 { 0.2310.24!0.23|0.20}0.13]0.11]0.10
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TABLE L.- WORK UNITS. PER 10—1 REDUCTION (a) IN THE RESIDUE OVER A RANGE

OF STRATEGIES. [AF smoothing, n_=1; KT0012, a=20°, n=256, =5, i=h]

wWork Work

D a o units D q o Units

per per

digit digit

0] 1 1 2.7 2 1 1 2.5

o] 2 1 2.2 2 2 1 2.3
1 0 1 2.2

1 1 1 2.2 1 2 4.3

1 2 1 2.2 1 0 2 5.3

2 0 1 2.0 1 1 2 3.6

aAverage values over last 2 MG cycles of a total of U4 MQ cycles.

10
c, n- DIMENSIONAL VECTOR o o Loy:NORM
NORMS OF ERROR IN
B~ | TANG. VELOCITY COMP. o o Ly-NORM
w o Ly~ NORM
-6
OPEN SYMBOLS:
ODD NUMBER
4
CLOSED SYMBOLS:
(e}
a—-10 EVEN NUMBER
-2+ OF PANELS
o o X
L
KT0012 PROFILE -4 L — \L— NUMBER OF
21073 16 32 64 128 256 512 PANELS:n
— -
Figure 1.~ Pressure distribution of 12 percent thick K&rman-Trefftz profile

with 15° trailing edge angle; Discretization error of this solu-
tion as function of the number of panels.
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LOG, . (P) L_OG1 (P)

10 0
0 0
-
-1+
2+
2t
-3
.3 L 1 1 -4 1 1 !
0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0
(a) na=0 ———»0/7‘[ (b) na—;1 JUNEEESE 9/7['
Figure 2.- Convergence factor as function of frequency for doublet method

(equation (13) with S-point differences); n =0 and 1, AF scheme.

LOG1(P) LOG 1¢(P)

0 0

-2 2

-4 41—

-6 l 1 | -6 1 | M |

0.0 0.26 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0

(@) ng=2 ——m 0/n (b) n,=4 — 0/

Figure 3.- Convergence factor as function of frequency for doublet method

(equation (13) with S-point differences); n_=2 and 4, AF scheme.
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LOG, ok ) LOG10(JL k)

0.3 0.2
0.2} 0.0
0.1 -0.2I~
0.0 -0.4
-0.1 1 1 1 -0.6 1 1 }
0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0
(a) na_—_o _bek/n (b) na=1 —_—-'Ok/n
Figure 4.- Row sum of amplification matrix G as function of frequency for
source method; KT0012, n=256, n =0 and 1, AF scheme.
LOG (Ay)
LOG10(/{k) 10( k
0.3 0.5
0.2t T
0.0
0.1
—0.5’—
0.0
-0.1 ] l_ 1 -1.0 1 ] ]
0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0
(a) n_=0 ——->0k/7r (b) ny=1 —0, /7
Figure 5.~ Row sum of amplification matrix G as function of frequency for

doublet method; KT0012, n=256, na=O and 1, AF scheme.
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10%—
E\ KT0012 PROFILE
Y
Al INCIDENCE =20°
16! N =20
FINEST LELEL n=32
w-zr o o n,=0| NO.OF LEVELS 1-2
_ —_— O—o—a_ p=1,g=1, m=1
-3 \ r SOLID LINE : RELAXATION
10 LEVEL OF TRUNCAA{
TION ERROR DASHED LINE : COARSE
10'4T LEVEL CORRECTION
g5k
1 GLOBAL [OBSERVED)
Na | SMOOTH.| CONV.
FACTOR | FACTOR
108
n, =2 0 1.35 0.80
1 0.49 0.23
10'7%
n =4 0.32 0.18
4 0.19 0.12
-8 1 1 I 1
107, 2 4 6 8 10 12

— NO

. OF FINE LEVEL RESIDUE EVALUATIONS

Figure 6.- Convergence history cf MG algorithm; 2 levels, source method,
AF scheme.
Ls (RESIDUE)
10°
KT0012 PROFILE
107! INCIDENCE @=20°
FINEST LEVEL n=256
- NO. OF LEVELS £=5
103 \ SOLID LINE: RELAXATION
\\°~o——o\ na=0 DASHED LINE: COARSE
_a- — © > LEVEL CORRECTION
10 \
LEVEL OF TRUN
CATION ERROR
105k CLOSED SYMBOLS: p=12
OPEN SYMBOLS
ng=1 =1,q=1, m=1
10—6" a p=1,qQ=I, m
AN
e
ny=2 \
-8 1 1 1 1 AN
107 2 4 6 8 10 9 12
— = NO. OF FINE LEVEL RESIDUE EVALUATIONS
Figure T7.- Convergence history of MG algorithm; 5 levels, source method,

AF scheme.
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CD
s} NLR 7301 PLUS 32 PERCENT FLAP
FLAP DEFL. 20°
5 GAP 2,6%
OVERLAP 5.3%
3F
1 1 1 |
0.6 0.8 1 1.2
2F X
-1+
oF—
1L
L { | 1 | L ||
0.2 0.4 0.6 0.8 09 1 1.1 1.2
X X

Figure 8.- Pressure distribution of NLR 7301 plus 32 percent flap at 6 degrees
incidence.

Lo, (RESIDUE)
107
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\
_1L \\‘*_"\Q INCIDENCE o= 6°
10 \o/"\cx FINEST LEVEL
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10
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1697
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a< -
16°] AN
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-8 1 | 1 1 M |
109 2 4 6 8 10 12

—— NO. OF FINE LEVEL RESIDUE EVALUATIONS

Figure 9.- Convergence history of MG algorithm; 5 levels, source method, AF
scheme.
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UNIGRID METHODS FOR BOUNDARY VALUE PROBLEMS WITH NONRECTANGULAR DOMAINS

W. Holland
National Center for Atmospheric Research

S. McCormick
J. Ruge
Colorado State University

1. Introduction

Multigrid methods are generally very effective for solving differential
boundary value problems. This is true because the smooth error, which is
slow to converge during relaxation, is reduced by iterating on the problem
projected onto coarser grids, where relaxation is both cheaper and more ef-
ficient. Fine grid relaxation can then be viewed as an attempt to eliminate
the high frequency error.

In lieu of coarse grid iterations, one can, in fact, modify the fine
grid relaxation process in order to reduce the smooth error directly on the
fine grid (i.e., without the use of coarser grids at all). Under certain
assumptions (see section 3), the resulting method, so-called unigrid [1],
is theoretically equivalent to conventional multigrid but has significantly
different computational characteristics. For example, unigrid requires less
storage and shorter code, but significantly more arithmetic work. More im-
portantly, it is much easier to apply to a given problem because most of the
design work for the grid transfers and coarse grid operators is automatic.
Thus, existing software packages that solve possibly very complex problems
by SOR, for example, can be easily modified for application of unigrid. This
can usually be done by making a few changes in the relaxation routine without
impacting any of the other software routines or data structures. These fea-
tures make unigrid effective as a multigrid software simulator for quick and
easy determination of the applicability of multigrid to a given problem.

Unigrid is developed in section 2, its relationship to multigrid is des-
cribed in section 3, some simple theory is presented in section 4, and its
use is illustrated with a North Atlantic basin oceanographic model problem
in section 5. This application demonstrates how unigrid (and, hence, multi-
grid) can be used efficiently with vector computers on problems with irregu-
lar domains.

2. Unigrid
Assume given the d-dimensional operator equation:
(2.1) AU = F, U e HL’

235



where A: Hl > H2 is a linear operator and Hl and H2 are appropriate Hilbert

spaces of functions defined on a region Q in Rd d > 2. Assume that (2.1)
admits discretizations by a family of matrix equations, parameterized by
admissible gnid s4izes h > 0 and given by:
h
(2.2) Avh = £, ol e WP,
h
h n h . . . . ~d
where H = R and n° is an integer (approximately proportional to h ). TUp-

h
per case U will denote the exact solution of (2.2) and lower case uh its ap-
proximation. The grid transfers are full rank linear operators, represented
\
by IE: Hh > Hh, that satisfy the consistency condition IE = I: IE for ad-

missible h, h', h when h < h' < hor h > h' > h.

The objective is to reduce the error from a current approximation u in

the subspace defined by a set of directions Dh = (d d2, | )cHh. Letting
h

= [d 2’
h by a functlon in the space of D , so that the projection of the resulting
re31dual over the subspace is zero. This leads to the problem of finding

d ], then a Ritz prOJectlon can be performed that corrects

T
some s = (sl, cees Sn) so that:

T
p' At P + D) - P -

This can be rewritten as:

T T
Dh AhDhs = Dh [fh - Ahuh]

Gauss-Seidel relaxation on this system with some initial approximation s and
a new approximation s can be written as:

=P o aABP D 3 s aBa - 3 5.APaL, ay/@ld, 4y
b i i’ i

IS S R PE1

uh can then be corrected by:

uh <o + DS

h
If Ah is linear, then corrections can be made to u  directly, rather
than to s, resulting in the directional iterafton
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(fh - Ahuh, di)

(2.3) uh “ uh + h d.
(Ad., d4.) 1
1 1

where left arrow denotes replacement. Rewriting (2.3) as:

(2.4) N N )
then one 4weep with initial guess uh consists of iterating with (2.4) in se-
quence over dk’ k=1, 2, ...nh. For example, Gauss-Seidel is specified by

the choice d, = h the kth

. . h
K = %o coordinate vector in H .

To define unigrid for a given admissible grid size h = HO’ suppose

m > 1 is an integer so that H = 2qHO are admissible, g < m. Now define the
direction sets for unigrid according to:
h g g "q
(2.5) Dq = (dl . d2 s eeey d a ) 0 < q<m,
nq
H h H
where qu = IH ekq. Thus, the directions on fevel q are just the relaxation
q

directions on grid Hq transferred to grid h = HO.
One of the many possible unigrid schemes is described in terms of the
relaxation parameters v and vc and the cycling parameter u. The unigrid

cycles are then defined recursively by: one unigrid cycle on level q con-
H

sists first of v unigrid relaxation sweeps via (2.4) with directions d q’

H
k=1, 2, ...n q’ followed for q < m by u cycles on level g+l and for i = m
by vc more sweeps via (2.4).

Remark The directions defining unigrid depend not directly on the operator
A but rather on the domain Q. Using linear interpolation, then these direc-

, h . .th R . . .
tions di are in fact the i grid h coordinate vectors interpolated to grid

HO. In one—-dimension, this is illustrated by the following figures.
h h
dp 94

-+
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b " N M . t
r ' t

b . 4
4 § ¥ t +

For rectangular Q in two~dimensions, each direction is a product of two such
functions, one in x and the other in y, resulting in the "tent" function des-

cribed as follows.

With the usual double subscript notation and nh = Nh X Nh, then d; . =

eg 3 for h = HO’ 1 < k, & < Nh. The coarse grid directions are defined so
s
H
that the i,j component of quz is:
]
(2.7) 4 q (i,3) = {(zq - [k‘l‘)(zq - {Q'Ji)s lk"ll,ll‘JI s 21
* k,2 77 0, otherwise.

This assumes that the point denoted by (k,%) is a point of the Hq grid.

In irregular regions where boundaries do not lie on coarse grid lines,
there are several options possible for treating these boundaries. The most
obvious, which is analogous to the usual multigrid approach, is to define the
directions as the interpolated coarse grid coordinate vectors and use the
(zero) boundary conditions properly in interpolation. This is illustrated in
one-dimension by d2 as in:

¥ —

Note that this requires special handling of the coarse grid points that are
adjacent to the boundary. Another approach is simply to ignore those direc-
tions which would overlap the boundary so that d2 is suppressed as in:
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In section 5, this will be referred to as the conthacted boundary method.

This means that some points near the boundary are not corrected by
smooth error iterations, so the danger is that convergence is slowed (see sec-
tion 5).

Another possibility is to enlarge the region, £, so that it is aligned
with the coarse grid directions, but ignore correcting that part of the ex-
panded region, Q, that does not lie in the interior of . This is illustrated

by:
dl d2

Note that this method, which is here called the expanded boundary approach,
does not require extra information at the boundaries so the directions can be
computed once for each grid over the entire domain & and stored in the form
of a matrix stencil.

3. Multigrid

One multigrid cycle on problem (2.2) with present approximation uh,
right-hand side fh, and h = Hq, is denoted by MGh(uh,fh) and defined recur-

sively by:
h <h . . .
, I) consists of v + Ve relaxation sweeps via

(2.4) with directions eE, k=1, 2, ..., nh.

h

For q = m, MGh(u

For q < m, MGh(u , fh) consists of:

Step 1. Perform v relaxation sweeps via (2.4) with direc-

tions ez, k=1, 2, ..., nh.
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h _ zh hh _2h 2h_h 2h

Step 2. Let vy =f - Au, r =I1I"r, u < 0, and per-
. . 2h =2h . =2h
form u grid 2h cycles via MG2 (v, £77) with £7 =
2h h
.

Step 3. Set uh < uh + Igthh.

Multigrid is theoretically equivalent to unigrid if, as is henceforth
assumed, the formulation of the coarser grid equations satisfies the vaiulia-
honal conditions:

2h _ _2h,h.h
(3.1) AT = 1AL

2h _ h,_h T
(3.2) LY = a(I,),

where ah is a scaler. To see this, consider the following {mmediate replace-

ment multigrid algorithm. The method depends directly on the fine grid right-
H

hand side £ 0 and its cycles on grid h = Hq are denoted by MGIRq(fO), where q

is used in place of Hq as a subscript or superscript. It is characterized as

a modification of conventional multigrid applied to (2.2) in which all coarse
grid changes are immediately reflected in the fine grid approximation and the
fine grid residual is recomputed and used to redefine the coarse grid equa-

tions. The algorithm is defined in terms of MGIRq(fO) by:

For q = m, MGIRq(fO) consists of performing v + v_ relaxation sweeps

0
via.
H
a9? - A%Y, e 9O H
uo +-u0 + 0 k Ioe ! k=1, 2 nd
q g Mg a4k C
<A ek > & >

For q < m, MGIRq(fO) consists of v relaxation sweeps via (3.3) followed

0
by U levels g — 1 cycles via MGIRq_l(f ).

Note that the immediate fine grid correction is incorporated in the relaxa-
tion scheme. This scheme on a level q > 0 is just (2.3) with uP = 0, 0 <p <

q, and rq = Ig(f0 - Aouo), followed by interpolation of the correction direct-

ly to the finest grid.
It is not difficult to see [1] that MGIR is fully equivalent to MG un-

der condition (3.1) - (3.2). This is done by noting what the status of in-
termediate MG calculations would be if coarse grid changes were immediately
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reflected in the fine grid approximation. By examining the iterative formu-
lae, it is easy to see that MGIR and unigrid are identical, from which it fol-
lows that multigrid designed according to the variational conditions (3.1) -
(3.2) is theoretically equivalent to unigrid.

Unigrid code is typically very compact, partly because it lacks the
modular structure of multigrid software. This is one reason that unigrid
code can be developed very quickly. Also, there are fewer design choices
with unigrid, since the coarse grid and grid transfer operators are automat-
ically determined. This also adds to ease of programming, but restricts the
flexibility of the method. The design of unigrid also guarantees convergence
independently of the choice of the coarse level iteration directions and cy-
cling scheme, so mistakes may slow convergence but do not result in diver-
gence as often as for multigrid.

This ease of programming and small program size makes unigrid an effec-
tive method to test the convergence behavior of multigrid for many applica-
tion problems. It can easily be used to replace the usual relaxation of
direct solvers in existing programs in order to perform such a feasibility
test. Of course, the amount of work involved makes any comparison of solu-
tion time meaningless, but actual multigrid efficiency can be determined by
applying the usual multigrid operation counts to the unigrid cycling scheme.
Since the methods are equivalent in terms of results when multigrid is im-
plemented according to (3.1) - (3.2), then unigrid will accurately represent
the numerical performance of such a variationally formulated multigrid
scheme.

4, Theory

Assuming that Ah is symmetric and positive definite, define the enengy

Annern product and nosumon Hh by:

h h hh _h
<X , y > =<A'x , ¥y >
h
A
and
R R
A

respectively. Let W? denote the set of all Ah-unit eigenvectors of Ah whose
eigenvalues are no larger than A and let'y? denote its Ah-orthogonal comple-
ment. LetGh denote one pass of (2.4) over the fine grid directionsl)h and

. h . . h s e
assume it spans H . For each integer v > 1, defineG as the restriction

A’y
of (Ah)--]'/z((Gh)\))TAh(Gh)\)(Ah)—l/2 to y? (For Jacobi-type versions of

(2.4), this latter operator simplifies to (Gh)zv.) Then, with 2m the degree
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of the differential operator in (2.1), assume (cf., [2]):

Al. There exists constants a > 0 and o < = independent of h and so
that:

h h oy 2 2
W = RCT Ahfco(Ah ™

for all admissible h and all Wh EU}?, where R(Igh) is the range of

of h (Note that R(I

IZh' = Span (D?), the coarse griddirections.)

h
2h>
A2. There exist constants cys €y > 0 with ¢y < 1 and cy < (cl + l)h-zm/

p(Ah), where p(Ah) is the spectral radius of Ah, so that:

h v 2myv
p(Gk,v) < max{cl, [l - czkh l 1.

THEOREM. Suppose p > 1 and m and vO are so that the error from coarsest

level does not significantly contribute to the finest level error. Then
there exists a v independent of h so that unigrid converges to the solution
of (2.2) by a fixed linear rate independent of h.

PROOF. This theorem follows from the results of section 3 that relate uni-
grid to multigrid and from the theory of [2] slightly modified to account
for the class of relaxation methods depicted in (2.4).

Relaxation does not generally minimize the residual error, although it
should approximately. In fact, when direct application of unigrid to (2.2)
exhibits convergence but does not monotonically reduce the residual error on
the coarse levels, this is a signal that the directions for relaxation are
improperly defined. They should be chosen to approximate the smooth eigen-
vectors of Ah, that is, those that belong to the lower end of its spectrum.
This would ensure that relaxation quickly eliminates the odciflatory eigen-
vector components, of the error with little effect on the smooth ones. Since
the spectrum of A" that corresponds to these oscillatory components is
nelatively narrow, then there is a close relationship between error in the
energy norm, for which relaxation is a wminimizer, and the residual error
norm. The residual norm is not generally minimized by relaxation, but a
proper choice of directions coupled with a good smoothing rate ensures that
it will be monotonically #educed.

5. Numerical Results

This section contains a report on numerical experiments with unigrid
applied to the solution of the model problem:

(5.1) —Vzu + Au = f in Q
u=g on 98



where Q is an irregular domain used to describe the North Atlantic basin. In
this case, § is rectangular on three sides but irregular on the fourth, as
depicted by:

A is a given function which is set to the constant 64 in the following exper-
iments. (Such a value for A results in strong positive definitiveness of the
operator in (5.1). leading to very fast convergence rates for multigrid.
However, such a value is fairly realistic for this application and sharply
depicts the disadvantage of using the contracted boundary method described

in section 3.) 1In these experiments, the fine grid spacing is h = 0.0625

and the rectangle encompassing Q is [0,3) x [0,2}. 1In each case, a very
simple grid cycling scheme with four grids is used, where each cycle involves
three relaxations, each performed in turn on grids 8h, 4h, 2h, and h. Four
cycles are made for each of the three problems, with u = 0 as the initial
guess. The usual central fine point stencil was used to discretize (5.1).

The main feature of the discretization of (5.1) is that the boundary is
enforced to pass through grid h vertices. Although this represents only an
approximation to the actual boundary (of reduced order), it has conservative
properties that are not easily obtained any other way. More specifically,
conservation of kinetic energy, vorticity, and enstrophy in a dissipationless
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finite difference discretization of atmospheric diffusion problems can be
easily guaranteed when the grid points and irregular boundary points coin-
cide (cf., [3]). However, although this is an advantage when used on a vec-
tor processor, coarse grids in the usual multigrid process will not generally
share this simplified property. The question then is whether or not one of
the means for preserving this feature on coarser grids (namely, boundary con-
traction or expansion) will maintain the efficiency of the usual multigrid
process. Such is the objective of the experiments reported in this section.

To compare the contracted and expanded boundary methods with the usual
multigrid, unigrid was used on the Cray 1 at NCAR as a simple tool to simu-
late multigrid performance. Instead of comparisons with the usual multigrid
on the irregular region, it was much simpler to compare the two methods with
the analogous (i.e., naturally extended) problem defined on the entire rec-
tangle [0,3] x [0,2]. Thus, a function U on this rectangle was chosen to
determine f and the usual unigrid algorithm was run on the full rectangle.
The results are depicted in the first column of the table. Both the con-
tracted and expanded boundary methods were also tried with the same f, but
with f restricted to the irregular region Q. The results are depicted in
the second and third columns of the table, respectively. Note the severe
degradation in convergence for the contracted boundary method. As might be
expected, however, there is almost no loss of efficiency with the expanded
boundary approach.

Although these are admittedly very limited experiments, they represent
the numerical experience with several such tests that were conducted. Gen-
erally, although full multigrid (FMG) vastly and expectedly improves the
performance of the contracted boundary method, it remains somewhat less ef-
ficient than conventional multigrid. On the other hand, the expanded boun-
dary method seems generally as (or nearly as) efficient, and therefore,
preferrable to the usual multigrid approach, especially for use on vector
processors such as the Cray 1.
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DYNAMIC RESIDUAL ERROR

Contract Expanded
Cycle Relaxation Multigrid on Multigrid Multigrid
Number Level [0,31 x [0,2] On Q On 9
8h 7 .402E+03 6.027E+03 7 .418E+03
1.197E+03 1.147E403 2.465E4+03
2.745E+02 1.753E+02 1.037E+03
4h 2.617E+03 2.384E+03 2.364E+03
7.758E+01 8.864E+01 2.598E+02
3.416E+00 3.927E+00 2.187E+02
1
2h 4.,270E+02 5.663E4+02 4.311E+02
8.350E+01 1.359E+02 1.002E+02
2.200E+00 4.139E+01 2.602EH01
h 1.090E+02 2.716E+02 1.437E+02
1.784E4+01 8.348E+01 2.630E+01
7.771E4+00 3.836E+01 9.057E+00
8h 3.620E+01 3.602E+01 3.749E+01
9.004E+00 6.381E+Q0 9.451E+00
2.383E+00 1.145E4+00 4 .826E+00
4h 3.236E+01 3.607E+01 3.166E+01
8.235E-01 1.383E+00 4,491E+00
3.198E-02 6.425E~02 2.348E+00
2
2h 6.099E+00 4.050E+01 6.358E+00
1.139E+00 1.006E+01 1.373E+00
2.956E-01 3.073E+00 3.161E-01
h 1.363E+00 2.030E+01 2.116E+00
2.232E-01 9.095E+00 4.554E-01
1.048E-01 4 .764E400 1.694E-01
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DYNAMIC RESIDUAL ERROR

Contract Expanded
Cycle Relaxation Multigrid On Multigrid Multigrid
Number Level {0,311 x [0,2] On § On Q
8h 3.602E-01 9.720E-01 5.507E-01
8.874E~02 3.538E-02 1.325E-01
2.134E~02 7.684E-03 9.404E-02
4h 3.599E-01 3.644E+00 4.807E-01
8.122E~03 1.276E-01 1.743E-01
3.198E-04 6.083E-03 1.064E-01
3
2h 1.127E-01 4 .954E+00 1.354E-01
2.044E-02 1.126E+00 3.299E-02
5.259E-03 3.595E-01 9.587E-03
h 2.329E-02 2.687E+00 4 .209E-02
4.590E-03 1.272E+00 1.035E-02
2.076E-03 7.181E-01 4.465E-03
8h 4.434E-03 1.617E-01 8.480E-03
9.947E-04 4,012E-03 4.178E-03
2.,325E-04 5.582E-04 3.872E-03
4h 4,774E-03 6.814E-01 9.658E-03
1.055E-04 2.275E-02 4, 446E-03
4,965E-06 1.167E-03 3.061E-03
4
2h 2.096E-03 7.891E-01 3.475E~03
3.632E-04 1.697E-01 7 .559E-04
9.150E-05 5.688E-02 2.512E-04
h 6.079E-04 4,213E-01 1.248E-03
1.561E-04 2.089E~-01 3.633E-04
6.461E-05 1.243E-01 1.590E-04
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BLACK BOX MULTIGRID
J. E. Dendy, Jr.

Los Alamos National Laboratory

Abstract

One major problem with the multigrid method has been that each new
grid configuration has required a major programming effort to develop a
code that specifically handles that grid configuration. Such a penalty is
not required for methods like SOR, ICCG, etc.; in these methods, one need
only specify the matrix problem, no matter what the grid configuration.
In this paper we investigate such a situation for the multigrid method.
The end result is a code, BOXMG, in which one need only specify the (logi-
cally rectangular, positive definite) matrix problem; BOXMG does every-
thing else necessary to set up the auxilliary coarser problems to achieve
a multigrid solution.

I. INTRODUCTION

In the multigrid method, one attempts to solve a discrete approxi-

mation

it = # (1)

to a continuous equation

Www=¥r . (2)

To do this one comstructs a sequence of grids Gl, ceey GM with correspond-~
ing mesh sizes h1 > L. 2 hM' In its simplest mode of operations, one
does a fixed number, IM, of relaxation sweeps (Gauss-Seidel, for example)

1

on equation (1) and then drops down to grid GM— and the equation

T S L) (3)
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where VM-I is to be the coarse grid approximation to VM = UH - uM, where

vM = uH is the last iterate on grid GM, and where Ig is an interpoiation
operator from GM to GM-I. To solve equation (3) approximately one resorts

to recursion, taking ID relaxation sweeps on grid Gk before dropping down

1

to grid Gk- » M1 > k > 2 and the equation

k-1 k-1 _ k-1_ (k-1 ck _  koky o %)

L k

When grid G1 is reached, the equation lel = f1 can be solved directly and

v2<-v2 + IZV1 performed. Then one does IU relaxations sweeps on grid Gk_1

! k. k,  k k-1
before forming v' <« v + I . v *, 3 <k <M (This description assumes
M > 3, the cases M = 1 or 2 being trivial.)

One advantage of the multigrid method is that one obtains a fixed
reduction of the error, significantly less than one, in the residual
FM - I.MuM per work performed per unknown on grid GM. This is in sharp
contrast to most iterative methods, for example, SOR, where the reduction
increases as a function of the number of unknowns on grid GM. Another
advantage is that in many cases, multigrid achieves truncation error in
work that is a small multiple of the number of unknowns. For further
details, see references 1 and 2.

In most implementations of the multigrid method, the operators Ii-l
have been grid dependent. In the simplest case, Gk and Gk-1 are rectangu-
lar grids, the grid pointskof ka1 are a subset of the grid points of Gk,

-1

the grid spacing hk—l of G is twice the grid spacing hk of Gk, and the

interpolation Ik-l is bilinear. (See Reference 1.) If there are always
to be Gk grid points on the boundary, then there is a coanstraint on the
number of x[y] grid points NXM[NYM] on GM that NXM = (NXO -1)2M“1 +
1 [NYM = (NYO - 1)2M-1 + 1], where NXOf{NYO] is the number of x[y] grid
points on Go. Otherwise, interpolation near the boundary is a special
case. The coding of interpolation is further complicated by whether the
points on the boundary represent knowns (as in Dirichlet boundary condi-
tions) or unknowns (as in Neumann boundary conditions).

Figure 1 shows two grids for a cell centered approximation to an

elliptic equation. (The x's represent Gk and the 8's Gk-l.) Now the
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above constraint on unknowns doesn't help since the nearest Gk point to
the boundary is hk/2 from the boundary and the nearest Gk-1 point to the
boundary is hk_1/4 from the boundary, where hk-l and hk are G1 and 62 mesh
spacings, respectively. The incorporation of a Neumann boundary condi-
tion, for example, on grid Gk leads to frequencies which are not damped
out by bilinear interpolation, and convergence is degraded. Again some-

thing special (either in the interpolation routine or the relaxation

routine) must be done at the boundary. This is easy in principle -
especially if Brandt is nearby to advise - but is a pain in practice.
There are two possible solutions in this case. One is to let hk—l = 3hk,

which again leads to the coding of a special interpolation. The other is
to use Gk—1 unknowns that are not a subset of Gk unknowns, as in figure 2.
This latter solution was the one employed in reference 3. Bilinear inter-
polation in this case involves special coding (for example, a = T%(QA +
3C + 3B + D) in figure 2), and there is again a constraint on the number
of GM unknowns to avoid special cases.

In addition to the grid structure, the actual difference equations

cause programming difficulties. Consider, for example,

-V - (B(x,y) VU(x,y)) + o(x,y) U(x,y) = £(x,y), (x,y) ¢ Q (5a)
v(x,y) * D(x,y) V U(x,y) + y(x,y) U(x,y) =0, (x,y) £ 8Q,

where Q = (0,A) X (0,B) with boundary 8Q, v is the outward normal to 3Q, D
is positive, 0 and Yy are non-negative, and D, O, and f are allowed to be
discontinuous across internal boundaries [’ of Q; hence it is also assumed

that

U and u +(DVU) are continuous at (x,y) for almost every

(x,y)e T (where p(x,y) is a fixed normal vector at (x,y).) (5b)

If the finite difference approximation of equation (5a) is a vertex
centered one as in ref. 2, then the '"classic" multigrid method of

Reference 1 (Ill:_1 = bilinear interpolation, Ik-1 = a fixed nine point

weighting operator, and the coefficients of Lk-kl a fixed weighting of the
coefficients of Lk) performs well as long as the discontinuities in D are

not too severe and as long as I’ doesn't consist of too many line segments,
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otherwise, it performs badly; indeed, it can even fail to converge in the
fixed mode described above.
Reference 2 dealt with the situwation in which D, 0, and f jump by

orders of magnitude across I'. It considered many possible choices of

IE-I’ Ii-l, and Lk—l. Only one of these choices was found to be robust.
. . k _ ;k k . .
This choice was Ik_1 = Jk_1 (where Jk—l is defined below),
k-1 _ -k .
I w = Uyy) (6)
and
k_]. - k L k k
L = (Ik_l)% L Ik-l . 7)

The choices, equations (6) and (7), are automatic in the finite element
formulation of multigrid (ref. 4). References 4 and 5 both observed that
Lk_1 = Itnl Lk I:_l, with Ii_l not necessarily equal to (Ii—l)*’ is a good
choice in that the residual of the corrected solution vanishes when trans-
ferred to the coarse grid. This can be shown to be a good feature if L

is symmetric. In the finite element formulation of multigrid, Ii-l is
also automatic. Indeed multigrid finite element with piecewise bilinear
elements was one of the methods considered in reference 2 and found not to
be robust.

The crucial choice, then, given equations (6) and (7} is the choice
of It-l' As discussed in reference 2, the first clue to the choice of
I§_1 was that, because of equation (5b), Ii-l should approximately pre-
serve the flux y < (DVU) across I'. In certain problems, however, when
there were large jumps in both D and 0, it was discovered that on coarser
grids where h2 is large, the interfaces in 0h2 were as important as the
interfaces in D. The obvious solution is to use the difference operator
for the interpolation operator Ii-l' In one space dimension with three
point difference operators, it is obvious how to do this. In two space
dimensions, for the five point discrete Laplacian, it can also be done
easily by the use of skewed five point discrete Laplacians; see
Reference 6. This approach is doomed for equation (5) for two reasons.

First, accurate skewed approximations are difficult if not impossible when
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interfaces are present. Second, even if LM is a five point operator, the

use of equation (7) generates nine point Lk's,

k < M, making the above
approach impossible. The solution arrived at in reference 2 is as
follows: Suppose that at (IF, JF), Lk has the pointwise template

[k k K i
“T1r, 3741 V1R, 0741 “RiFe1, 0741
k k k
Ur g¥ Str,ar "YEe1,IF (8)
k k k
'RIF,JF “Yir,JF 'T1F+1,JF
L .
~k . k k Yk -
Form Qipiq g7 = Trper,av+1 * Qwer,or * Ripe1,090 Stre1,0F = Yirer,ov ?
k k ~k _ ok k k
Stre1,0F T Yire1,0r+10 2% Qrrep gF T Tipe2,ar7 * Qre2, 07t Bipe2, 00410
Then for horizontal lines embedded in the coarse grid,
~k k-1 = k-1
JK _ Urer,ar “1c,3¢ * Yre2,07 Yic+1,0C (9)
IF+1,JF ¥k
IF+1,JF

(We have just summed equation (8) vertically to average out its y-depend-

ence.)

A similar formula can be used for vertical lines embedded in the

coarse grid squares. Then, at fine grid points centered in coarse grid
squares, V¥F+1 JF+1 My be obtained from the difference formula; i.e.,
>
vk - (Qk Vk + Qk vk
IF+1,JF+1 IF+1,JF+1 "IF+1,JF+1 IF+1,JF+1 "IF+2 JF+1
k k k
+ w11<F+1,JF+1 ViF+1,3F T YIF+1,JF+2 VIF+1,JF+2
(10)
+ Rk k + Rk k

IF+1,JF+1 IF,JF = “IF+2,JF+2 ' IF+2,JF+2
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k k k k k

* Tiper, w42 Vir,ar+2 T Tire2,a5+1 Virs2, 080/ S1Re1, a5+ .

The vertical analogue of (9), (9) and (10) constitute the definition of
Jt-l alluded to immediately preceding equation (6) above.

The near ultimate insult is a cell-centered difference approximation

to equation (5) using hk-l = 3hk or the grid structure of fig. 2. The
which approximately preserves flux across I in this

k-1
case is not obvious, and the computation of (Ii-l)* Lk Ii-l is a disaster.

definition of I

Desperation being the mother of invention, one soon decides there has to

be a better way.

II. BLACK BOX MULTIGRID

The better way has already been described; one only needs to inter-

pret it differently. The crucial observation is that once one has a
pointwise template like equation (8) for LM, then the definition of Ji-l

k ~ +k Sk
and (Jk-l) L Jk-l

refer to this method as black box multigrid not because - as some would

is independent of where this template came from. (We

have it - multigrid is black magic but because the code which implements
the method acts as a black box for the user; he need only specify the
difference equations on the finest grid since the code, BOXMG, generates
the auxilliary coarse problems.

The same artifice allows one to get rid of the restriction on the
number of unknowns on the finest grid. For the situation depicted in
figure 3, for example, one can imagine ficticious coarse grid points. The
boundary conditions on the fine grid are incorporated into the operator,

as in reference 2, so that for points (IF,JF) on the right boundary, for
example Rk = Qk = Tk

’ UIF+1,JF+1 IF+1,JF IF+1,JF
ary of the coarse grid doesn't coincide with the boundary of the fine

= 0 in equation (8). The bound-

grid, but the boundary conditions will be picked up by the formation of
k .k

k.
(Jk_l) L Jk-l'
An example of an extreme case of this artifice is the situation in
which one wants to solve a Dirichlet problem on a given irregular region.
One proceeds by embedding the region in a rectangle, writing down dif-

ference equations at points interior to the region. These difference
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equations incorporate the Dirichlet data on the boundary of the region in
such a way that there is no coupling between the interior points and the

other points. At the other points one writes down an equation

o, .U, .=F, ., where 0, . # 0 and F, . are arbitrary. This artifice
1,1 1,3 1,3 1,] 1,]

makes the problem logically rectangular. The solution to the difference
equation is obtained at the interior points, and the solution U, . =

i,)]
/0. . is obtained at the other points. On a serial machine, this

piéges:’%or solving irregular region problems may be inefficient for some
regions, since the number of other points can be quite large. On a vector
machine, however, the situation isn't clear, since the embedding technique
is immediately vectorizable and since other techniques may vectorize with
difficulty.

One disadvantage to the black box method is storage. In the situa-
tion that the coefficients of the difference equations are easy to compute
(for example, Laplace's equation on a rectangle), there is a storage

penalty of at least five [seven] locations per fine grid point for the

black box method for a five [nine] point operator; this assumes that the
M

IF,JF
one is not going to restrict the number of unknowns on the finest grid,

right hand side is stored and that 1/S is computed and stored. 1f
however, then not storing the coefficients means additional programming
and checking for special cases. (If the checking involves an IF test in
the inner loop of a double DO loop, the degradation in run time can be
dramatic on a machine like a CDC 7600.) Moreover, we are more interested
in problems like equation (5), where the coefficients of the difference
equations are pot easy to compute and have to be stored anyway.

If we assume that the finest grid coefficients are stored, then there
is still a storage penalty for the black box method. First, even in the
case that the operator on the finest grid is a fine point operator, nine
point operators are generated on the coarser grids. If it is assumed that
the given problem can be worked with five point operators on the coarser
grids (an assumption which is not at all clear for equation (5)), then an
extra two storage locations per coarse grid point are required, for a
total of 2(1/4 + 1/16 + ... ) = 2/3 locations per fine grid point.

Second, the interpolation coefficients have to be stored, requiring four
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locations for equation (9) and its vertical amalogue. (Unfortunately,
since the coefficients in equation (9) don't necessarily sum to 1, both
vk A = N, .

QIF+1,JF/SIF+1,JF and QIF+2,JF/SIF+1,JT‘ must be stored.) Equation (10)
requires no additional storage but does require nine multiplies. By using

equation (9) and its vertical analogue, equation (10) can be rewritten in

. k k k k .
terms of coefficients of VIF,JF’ VIF+2,JF+2’ VIF,JF+2’ and VIF+2,JF’ this

reduces the computation of equation (10) to four multiplies but requires
four storage locations per coarse grid point. Hence interpolation as

currently implemented in BOXMG requires a total of 8(l/4 + 1/16 + ... )

8/3 locations per fine grid point.

One can also ask the question of whether there is any disadvantage in
execution time with the black box method. The worse case is the case in
which the operator on the finest grid is a five point operator; to be
fair, let us assume that it is not the five point Laplacian, in order that
advantage cannot be taken of the very simple form of the coefficients in
the five point Laplacian. To be unfair to the black box method let us
assume that It—l is injection in the "classic" multigrid method. Experi-
mentally, for easy equations, BOXMG achieves the reduction of the error by
a factor of 0.1 [0.05] per multigrid cycle for IU = ID = 1 and IM = 2[ID =
2, IU=1, IM = 3}. This is in contrast to figures of 0.25 and 0.125 for
"eclassic" multigrid. If the total work for "classic" multigrid and black
box multigrid is computed, including the work for Ii—l and Ii-l and if the
comparison is expressed in terms of the convergence factor {(convergence
factor = reduction of error/work unit, where 1 work unit = 8 floating
point operations, the amount of work for one Gauss~Seidel sweep on the

finest grid), then the comparison is as follows:

convergence convergence convergence factor,
factor, factor, "classic" with
"classic" black box residual weighting
IW=1Ip=1, IM=2 0.66 0.66 0.75
IU=2, ID =1, IM = 3 0.64 0.66 0.74

Thus there is no penalty in convergence factor for the black box method.
There is a penalty, however, for the black box method in that the computa-

tion of IE-I and 1’..k—1 is not without cost; this is startup calculation
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time that doesn’'t have to be performed in the "classic" multigrid method.
As soon as one considers the convergence factor for "classic" multigrid if
nine point residual weighting is necessary (as it will be for all but the
simplest problems), then the degradation of convergence factor makes it
obvious that the black box method can pay for its overhead. Moreover, the
black box method will work problems that "classic" multigrid can't handle.
If, however, one is solving just to trucation error, then the '"classic"
mualtigrid method is probably more efficient for problems with smooth
coefficients. The extra expense of cubic interpolation the first time a
grid is visited in the classic multigrid method is probably more than

offset by the expense of computing Lk, k <M, in the black box method.

A relatively unimportant issue of implementation is whether Ii—l =
(Jt-l)* is necessary. In reference 2 a heuristic argument was made for

this choice, but experiments seemed to indicate that the use of a fixed

nine point weighting for I did not lead to any significant degradation

k
of convergence factor, as long as It-l = Ji_l and equation (7) is used to
define Lk—l. (In some problems, the fixed weighting even gave slightly
better convergence.) A nine point fixed weighting for Ii_] = (J;_l)* is

automatically correct at the boundary. Hence, since J is stored, it is
k-1
K

The multigrid algorithm described in section 1 begins on the finest

Kk k-1
easier to use (Jk_l)* for 1

grid GM. In the full multigrid algorithm described by Brandt (ref. 1),
one begins on the coarsest grid G1 instead and uses the coarser grids to
generate a good initial guess. For three grids, for example, the pattern
of grid transfer is G! + GZ > G! > G% > 63 > 62 > G! > G% » G2. 1Im
Brandt's scheme, when a grid is visited for the first time, cubic inter-
polation is used instead of bilinear interpolation, and when the finest
grid (63 in the example above) is visited for the second time, one has the
solution to truncation error. Indeed for equations with smooth coeffi-
cients, not only are the pointwise values h2 accurate but the centered
difference quotients approximate the first and second derivatives to h2

accuracy.
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In BOXMG we have not implemented cubic interpolation nor the general~
ization of it ((5.12) of reference 2) for equations with discontinuous co-
efficients; the reason is that numerical experiments indicated no advan-
tage for either versus Jt_l in equations with discontinuous coefficients.
This issue is discussed further in Section IV.

One final issue, discovered by Brandt, is the issue of the use of the
right hand side in interpolation. Generally, the use of the right hand
side provides an O(hz) correction to interpolation and is not worthwhile.
‘In black box multigrid, however, the right hand side at the boundary can
contain boundary data, and in such cases, not using the right-hand side

can lead to 0(1) interpolation errors at the boundary, and comsequently

destroy all hope of solving to truncation error in one or two cycles.
k /Sk

Iq:l,JF IF+1,JF
where r

Thus to the right hand side of equation (9) we add r , and
k
1F+1,JF+17 STP+1 L TE4L

is the residual; when a grid is visited for the first time r = Fk (if a

to the hand side of equation (10) we add r

zero initial guess is used).

I1I. THE PARAMETERS OF BOXMG

In this section we discuss the parameters the user must specify to
use BOXMG. These are actually discussed in the comments of BOXMG follow-
ing the reading of the parameters, but we provide a little more detail
here. We hope this description and the examples of Section IV will make
the usage of BOXMG clear. We had originally intended to rewrite BOXMG in
perfect, portable Fortran. Ignoring for the moment whether such a beast
exists, we discovered that we were phychologically incapable of the quest.
Nevertheless, we still hope that BOXMG will prove useful and that its
coding is clear enough to be changed by others for their devious ends.

The grid in BOXMG is always logically rectangular. The parameters
NXM and NYM specify the number of unknowns in the x and y coordinates
respectively. HXM and HYM specify the x and y spacing respectively on the
finest grid; these parameters are only used in computing the discrete L2
norm of the residual, since the user specifies the equations on the finest
grid. Indeed, since the equations on the finest grid can be written on a

Lagrangian grid, HXM and HYM may have little meaning in some cases.
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TOL is the tolerance. In one mode of BOXMG, iteration is continued
until the discrete L2 error of the residual is less than TOL or until the
accumulated number of multigrid cycles NCYC is equal to JISTRT}.

IFD is an indicator for the scheme on the finest grid. If IFD =1, a
five point scheme is assumed; otherwise, a nine point scheme is assumed.
IU, ID, and IM have already been discussed in Section I. The recommended
choices are IU=1ID=1 and IM =2 or IU=1, ID = 2, and IM = 3. For
problems with smooth coefficients the latter choice is slightly better;
for problems with rough coefficients the first choice is better. 1If
ISTRT < 0, BOXMG will begin iterating on the finest grid. If ISTRT > O,
BOXMG will begin on the coarsest grid and will bootstrap itself up to the
finest grid, as discussed in Section II, and then continue cycling.

IRELAX is an indicator for the type of relaxation. IRELAX = 1 means
point relaxation. JRELAX = 2 means line relaxation by lines in x.
IRELAX = 3 means line relaxation by lines in y. IRELAX = 4 means line
relaxation by lines in x followed by line relaxation by lines in y. These
options are included for flexibility. For equations like & U + uyy = f,
€ << 1, (or for Au = f, where Ax >> Ay on the finest grid) line relaxation
by lines in y is needed for a good smoothing rate (ref. 2). For u . +
€ uyy = f, line relaxation by lines in y is needed for a good smoothing
rate. In some cases, both are needed.

ITAU is an indicator for computing and printing an estimate of the

truncation error. If ITAU = 0, then

-1 M M~-1 ~M-1
Jﬁ F - L, I, T (11)
where Tg-l is injection, is computed and printed. If ITAU # 0, then
eq. (11) is not computed and printed. A discussion of this feature is

given in Section IV.

ICOEF determines when (Jllz_l)*Lk Jt-l will be computed. If ICOEF = 0,
then when M, the number of grids is computed, ICOEF will be set equal to
M, and (Jll:_l)*Lk Ji—l will be computed for k < M. If ICOEF = 1, then Lk
must be specified for every grid, Gk, 1 < k <M since (Ji—l)*Lk Jt-l will

not be computed for any grid. This feature allows the user to run some-
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thing like "classic" multigrid except that Ji-l will still be computed by
the code and may or may not be bilinear interpolation; hence, the use of
this option (ICOEF = 1) may lead to divergence if discontinuities of
orders of magnitude exist in the coefficients.

IVwW, MCYCL, ALPHL, and ALPHM are cycling parameters. IVW determines
the type of cycle to be performed. If IVW = 1, the usual V-cycle will be
performed. If IVW = 2, W-cycles will be performed. Larger values of IVW
give more exotic patterns. MCYCL is for the coarser grids what ISTRT is
for the finest grid; in each cycle grid Gk, k <M will be wvisited MCYCL
times before grid Gk+1 is visited unless the discrete L2 norm of Jﬁ-lfk -
L1 T¥! 0" is less than ALPHL (ALPHM if k = M) times the discrete L’
norm of the residual on Gk. The usual value of MCYCL is 1. The theoreti-
cal value of both ALPHL and ALPHM to achieve trumncation error is 0.125.
If, however, one is solving in the mode where the discrete L2 norm of the
residual is to be reduced to less than TOL, then ALPHM = 0 should be used.
The flexibility provided by these four parameters is awesome.

Aside from specifying these parameters, the user must provide the
subroutine PUTF, which specifies the difference equations on the finest
grid. (As remarked above, certain values of ICOEF would require PUTF to
make sense for coarser grids as well.) An example of a PUTF is given in
the listing of BOXMG in reference 7. PUTF has one argument K and a call
to KEY in it, CALL KEY(X,JST,II1,JJ,HX,HY), which fetches the storage for
the arrays. For IFD = 1, the user must specify the arrays FR, FA, SO,
SOR, and QF. For IFD # 1, he must specify FSW and FNW as well. The

logical grid is assumed to be (1,J); I =1, ..., II; J =1, ..., JJ. The
sets {(1,3): J =1, ..., J3}, {(11,1): 3 =1, ..., 33}, {(I,1): 1I=1,
.., 11}, and {(1,33): I =1, ..., 11} are fictitious points, assumed for

ease of programming. For IFD = 1, the template

-~ FA(JP+I)
- FR(JO+I) SO(JO+I) - FR(JO+I+1) s
- FA(JO+I)
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is assumed, where JO = JST(J) and JP = JST(J+1). For IFD # 1, the tem-
plate

- FNW(JP+1) - FA(JP+I) - FNW(JP+I+1)
- FR(JO+I) SO0(JO+I) - FR{JO+I+1)
- FSW(JO+I) - FA(JO+I) - FNW(JO+I+1)

is assumed. 1In both cases, QF(JO+I) should be the right hand side, I = 2,
ooy Il =11-1; J =2, ..., J1 = JJ-1 in PUTF. The boundary conditions
should be incorporated into the operator, so that all coefficients re-
ferring to fictitious points should be zero. For example, FR(J0O+2),
FSW(JO+2), and FNW(JP+2) should all be zero, J =1, ..., JJ.

BOXMG automatically determines the number of grids M from the input
parameters NXM and NYM. It does this by bisecting the given logical grid
until it arrives at a grid which cannot be practically bisected any fur-
ther, i.e., when the pnumber of x or y unknowns is three or four. (For
NXM >> NYM or NXM << NYM, this may lead to che situation of its being
profitable to bisect the coarsest grid only in the x or y direction, but
this feature is not provided in BOXMG). Once the number of levels is
determined, BOXMG computes how much storage must be allowed for the
various arrays. If insufficient storage has been declared, a message is
printed and the code terminates.

The storage parameters in BOXMG are:

NOG = maximum number of grids
= maximum storage for NX and NY in common block DC1
= maximum storage for NST, IMX, JMX, HX, HY and IND in common block
GRD
NFMAX = maximum storage for arrays Q, QF, FR, FA, S0, SOR, TOT
NCMAX = maximum storage for arrays CIA, CIR, CISW, CISE, CINW, CINE, CIL,
CIB
NABD1 = maximum first subscript of ABD, where ABD is the array used for

direct solution on the coarsest grid
NABD2 = maximum second subjscript of ABD

If IFD = 1, the storage required for FSW and FNW is NCMAX; otherwise NFMAX
is required. If IRELAX = 1 or 2, SOS can be dimensioned to 1; otherwise,

SOS should be dimensioned to NFMAX.
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IV. EXAMPLES
The first example is for eq. {(5) for Q = (0,24) x (0,24). The

boundary conditions are

du _ !-u/ZD ony= 24 or x = 24
v 0, otherwise,

and D is given by

D(x,y) = {1, if (x,y) £ [0,12) x [0,12) U (12,20] x (12,20]
24 1000, otherwise

We take 0 =1/3D, and f = 0 when D=1 and £ =1 when D = 1000. The
results are summarized in Table 4.1. In this table 1.64, -1, for example,
is used for 1.64 X 10-1. Also t?—; is the quantity in (11); the number r
is the exponent in the asymptotic éxpansion of the error in the t's; it is

error(2h) .
error(h) )/log 2. The first three rows show

the results of running one cycle starting on the coarsest grid; the next

computed by the formula log (

four rows continue from there until the discrete L2 norm of the error is
less than 10_6. In the last row, HXM and HYM are still .5, so that the
region is really (0.,23) X (0.,23.); this example illustrates the picture
of Fig. 3 for the tranmsition from Gk to Gk-l, k=35, 4, 3, 2. Since
(0.,23.) x (0.,23.) is a small pertutbation of (0.,24.) X (0.,24.), one
would expect comparable results for the two cases. An example of para-~
meters is for the last row, where NXM = NYM = 48, HXM = HYM = .5,
TOL = whatever, IFD =1, IU =1, ID = 1, ISTRT = 20, IRELAX =1, ITAU = 0,
ICOEF = 0, IVW = 1, MCYCL = 1, ALPHL = 0.125, ALPHM = 0.125.

The second example is the same as the first example except that

1]

cell-centered differencing is employed. For the runs made, the interface
comes midway between cell centers. In one dimension, if an interface is
located at ih and D(x) = D, if x > ih and D(x) = D_ if x < ih, then the

difference equation at (i-%)h is

1 1

D2t O a0, w00 Yi-/2 T 172, ¥ D) Ytz
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Table 4.1

Reduction in Discrete

CPU Time in maxlt?-¥| L2 Norm of Residual
Number of Seconds on i,j »J in last cycle and
Unknowns CDC 7600 and Estimate of r number of cycles
13 x 13 =
ALPHM = .125 .017 2.06 .09; NCYC = 3
25 % 25 .052 6.00, -1; r = 1.61 .09; NCYC = 3
ALPHM = .125
49 X 49 = . =
ALPHM = .125 .170 1.84, -1; r = 1.71 .07; NCYC = 3
13 x 13 =
TOL = 10-6 .036 2.06 .13; NCYC = 8
25 X 25 - ] =
TOL = 10-6 .126 6.00, -1; r = 1.61 .34; NCYC = 10
49 % 49 = . =
TOL = 10 6 .430 1.84, -1; r = 1.71 .46; NCYC = 14
49 X 49 -6
TOL = 10 —, .554 1.84, -1 .23; NCYC = 9
IVW = 2
48 X 48 =
ALPHM = .125 .156 2.74, -1 .07; NCYC = 3

a similar formula holds in two dimensions. The results are summarized in
Table 4.2. An example of parameters for this problem is for the last row,
where NXM = NYM = 48, HXM = HYM = .5, TOL = 10'6, IFb =1, Iu =1, ID = 1,
IM=2, ISTRT = 50, IRELAX =1, ITAU = 0, ICOEF = 0, IVwWw =1, MCYCL =1,
ALPHL = 0.125, ALPHM = 0. §?§It?:;lis assumed next to (24., 1§;1’ near
the interface and right boundary. Away from the interfaces the ti,j's are
well behaved. Let us examine the answers at (24., 12.) and compare them
with those obtained from the vertex centered scheme. By using the
approximation to the boundary condition for a horizontal averaging and
conservation of flux for vertical averaging, we can get approximations to

the solution at (24., 12.) for the cell-centered scheme; call them
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Table 4.2
Reduction in Discrete

CPU Time in maxlt?-¥| L? Norm of Residual
Number of Seconds on i,j »J in last cycle and
Unknowns CDC 7600 and Estimate of r number of cycles
12 x 12 . _
ALPHM = .125 .014 4.82 .13; NCYC = 3
24 X 24 _ _
ALPHM = .125 . 045 3.73; r = .37 .10, NCYC = 3
48 x 48 . _ . _
ALPHM = .125 .116 2.30, r=.70 .08, NCYC = 2
12 X 12 =
TOL = 10-6 .038 4.87 .14; NCYC = 10
24 X 24 = . =
TOL = 10—6 .103 3.75; r = .38 .12; NCYC = 9
48 x 48 _ . _
TOL = 10-6 .354 2.26; r = .73 .10; NCYC =9
ﬁzc, ﬁic, ﬁic (for finest grid 12 X 12, 24 X 24, and 48 X 48 respectively
and tolerance 10_6). Let u3 , u4 , u5 be the answers from the vertex

ve ve Ve

centered scheme at (24., 12.) (for finest grid 13 X 13, 25 X 25, and
49 X 49 respectively and tolerance 10—6). Compute ﬁif = 4/353c - 1/3ﬁﬁc

RE _ 5 _ 4 . .
and u = 4/3uvc 1/3uvc. (RE stands for Richardson extrapolation.)
Then 53 - GRE = .801, ﬁh - uRE = ,226, and ﬁs - uRE = .056; and
cc cc cc cc cc cc
u3 - uRE = .766, uk - uRE = .224, and u5 - uRE = .056. Thus the

ve ve ve vc 2 ve ve
assumption of asymptotic error of Ch” at (24., 12.) for both schemes is

justified, and -- at least for this example -- there is no reason from
considerations of accuracy to prefer the vertex centered scheme to the
cell centered scheme. (We have also checked points away from the inter-
faces and boundaries, and the same conclusion -- less interesting in these

cases -- is valid.)
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The third example is

~AU
U

where F is chosen so that the solution is U(x,y) = Sexe_yxy(l-x)(l-y).
The only way one can handle such a Dirichlet problem with BOXMG is to

F on Q
0 on 3Q,

(0,1) x (0,1)

incorporate the boundary data into the right hand side of the finest grid.

Thus the difference operator along the x = 0 boundary away from the cor-

ners is
-1
15 0 4 -1
h -1

I.e., the boundary is not treated as part of the grid at all. To have the
boundary treated as part of the grid in this case would have required a
lot of special cases in BOXMG; hence, we decided not to implement this
option.
The results are summarized in Table 4.3. 1In this table,
0 R 0% e o %
i,] 2h

In this example, two cycles appears to be sufficient to solve nearly to
truncation error in both the function values and their derivatives even
though cubic interpolation is not employed. An example of parameters for
this problem is for the fourth row, when NXM = NYM = 9, HXM = HYM =.1,
TOL = 10-6, IFD=1, 1IU=1, ID =1, ISTRT = 50, ITAU = 0, ICOEF = O,
IVW = 1, MCYCL = 1, ALPHL = 0.125, ALPHM = 0.

The fourth example is

-AU = F on Q = circle of diameter 1. centered at (0., 0.) (12)
U(x,y) = g(x,y) = 3e"e Yxy(1-x)(1-y), if (x,y) & 30,

where F is chosen so that the solution is U(x,y) = 3exe_ny(1—x)(1-y).
This example illustrates the technique of embedding. We embed Q in
Q' = (-.5, .5) x (-.5, .5). At points in Q'\ﬁ we write down the equation
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99¢

Table 4.3

0 U M-1 Reduction in Discrete
CPU Time in maxlui BN | max |D u; ol N maxlti | L2 Norm of Residual
Number of Seconds on i, ] 1l i,j d 1l i,j ol in Last Cycle and
Unknowns CDC 7600 and Experimental p and Experimental g and Experimental r Number of Cycles
9 x 9 011 1.01, -3 1.13, -2 6.26, -3 05; NCYC = 3
ALPHM = .125 ) B T e e
19 x 19 . _ . _ . _ . -
ALPHM = .125 .032 2.53, -4; p = 2.00 3.15, -3; q = 1.84 8.17, -4; r = 2.93 .03; NCYC = 3
39 x 39 B _ . - . - _
ALPHM = .125 .109 6.37, -5; p = 1.99 8.37, -4; q = 1.91 7.28, =5; r = 3.48 .02; NCYC =3
9 %9 » .018 1.02, -3 1.12, -2 6.27, -3 .09; NCYC = 5
TOL = 10
19 x 19
-6 .052 2.56, -4; p = 1.99 3.15, -3; q = 1.83 8.16, ~4; r = 2.99 .11; NCYC = 6
TOL = 10
X
PP 174 6.42, =5; p = 2.00 8.37, -4; ¢ = 1.91  7.24, =5; r = 3.49 .11; NCYC = 6
TOL = 10
39 x 39
.082 7.48, ~5; p = 1.76 9.82, -4; q = 1.76 6.99, -5; r = 3.54 .01; NCYC = 2

ISTRT = 1




un = 0.; at points in Q whose north, south, east, and west neighbors are in

Q, we use the usual five point Laplacian. For simplicity we use the
simplest treatment of points that don't fall into either of the above

sets. Consjider, for example, a point U¥ i in  whose neighbor U?+i i is
-— 2
not in Q, and let the distance from ili to 9Q be Oh. Approximating

2 2 . . . ~
h Uxx by (_U?-i,j + 2U!i1’j - U?+i,j) and using the relation g((i+0)h,jh) &

(l-O)Ug . +6U¥ . . to solve for Ug . . gives the following difference
1,] iti,J i+i,]
equation at (ih,jh):

-UM ..+t (3 + —)U? . - UM

i-i,j ) i,j-1 ~ Ti,j+1

D=

(13)
= h®F(ih,jh) + %g((i+c)h,jh);

note that there is no coupling between (ih,jh) and ((i+1)h,jh).

The results are summarized in Table 4.4.

The fifth example is the same as the fourth example except that in
this case we use mapping to solve it. That is, we map the boundary of Q
onto the boundary of Q" = (0,1) X (0,1) giving x and y as a function of §

and n on 30" and solving approximately the problem

0, (§,n) & Q"

{Am
x = x(§,n), (&,n) £ aQ"

(14)
by
&

H
0, (E,H) £
We do this by discretizing ", approximating eq. (14) by five point

v(&€,n), (§,m) £ a3Q"

Laplacians and specifying

x(ih,1) = % cos(§% - ib]) , y(ih,1) = % sin(é% - ihD)
x(ih,0) = % cos(é% + ihg) , y(ih,0) = % sin(é% + ihg)
x(o,ih) = % cos(é% - ihg) , vy(o,ih) = % sin(i% - ihg)
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Table 4.4

Reduction in Discrete

CPU Time in naxlui .- U.a~l.]| wmax|D Ui '.‘-1 Bxl' N maxlti N Discrete L2 Norm of Residual
Number of Seconds on i, 2 ted i, J bed i, d L2 Norm of Error in Last Cycle and
Unknowns CDC_7600 and Experimental p and Experimental q and Experimental r and Estimate of P numsber of cycles

9 x 9 011 3.21, -3 2.53, -2 3.15, -2 5.37, -4 04; NCYC = 3
ALPHM = .125 ) e I i ! e
19 x 19 -4; -3; q = 1.64 171, <15 £ = 2.44 1.72, -4; p = 1.64 07, NCYC =
ALPHH = .125 .032 9.31, -4; pBE1.78 8.11, -3; q = 1. L1, -1, £ =2, .72, ~4; p=1. .07, cC=3
39 x 39 -4 p= pa= 62, -1; 08 4 p=- 0, NCYC =
ALPHM = 1.25 .109 7.24, -4; p = .36 3.77, -3; q = 1.11 1.62, -1; r B . 1.91, -4; p=-.15 .10, NCYC = 3
9 %9 =

-6 .018 3.21, -3 2.53, -2 3.15, -2 5.37, -4 .04, NCYC = 6
TOL = 10
19 x 19 o _ L i _

-6 .073 9.14, -4; p = 1.81 7.94, -3; q = 1.67 1.71, =15 ¢ = -2.44 1.66, -4; p= 1.69 .10, NCYC = 9
TOL = 10
39 x 39 _ _ _ _

-6 .269 2.50, ~4; p = 1.87 2.77, -3; g = 1.51 1.61, -1; r = .09 4.82, -5; p=1.78 .13, NCYC = 10
TOL = 10
39 x 39 o _ _ o _
ALPHM = .05 .134 2.77, ~4; p = 1.74 2.80, -3; q = 1.53 1.61, -1; r = .09 6.04, -5; p = 1.51 .11, NCYC = &




x(1,ih) = % cos(:% + ihg) , y(,ih) = % sin(:% + ihg) .

Ideally, eq. (14) should be solved by multigrid, but for simplicity in
this example we used SOR. The equation (13) transforms to the following

in the £-n coordinate system:

- - = ]
(Glyn szn)€ * (6y%¢ Gzyg)n FJ, (§,m) £ Q
(15)
u(g,n) = g&,n), (§,n) € 3" ,
where G, = Q(u y. - uye.), G, = Q(u Xe - UeX ), and J = X,y - X_Veg-
1 378 n°§ 2 JI'ng E€n £n né
Equation (15) is differenced in cell-centered form. The results are

summarized in Table 4.5.

Since J is singular at the corners of Q", it is not surprising that
the error in the approximation to the x-derivative (the finite difference
version of %(ynug - ygun)) grows larger as the mesh is refined. For the
fixed point (.1,.1) -- the interior point nearest (0,0) on the 10 X 10 £-n
grid -- this error decreases; mnevertheless the maximum error in the
approximation to the x-derivative grows and is always assumed at a point
nearest one of the cormers of Q".

The sixth example uses the mesh in Fig. 4, which was the mesh used
in a Rayleigh-Taylor calculation in Ref. 3. We include it since it is
rather distorted (in fact, as commented in Ref. 3, a "bowtie" forms on the
next time step) and represents a challenge to the black box approach. We
use the same differencing as employed for eq. (15). For this example, it
is not clear what continuous system is being approximated. If however, we
use Dirichlet data identically equal to 1. and F = 0., then the solution
to the difference equations is identically 1. The results are summarized

in Table 4.6.
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Table 4.5

CPV Timr 8 .ul-‘ -y Nazidem Decavalsvr Uinieetse LY a-degavative krivr a~derivalivr drver
e af Bocvuds oa by Kesor sud Wure ol Regur ot (b, 1) aed S) end

_lsieengy _CC T40e god fuperimeatef g fatimate ot g _ e datimeie of g, ~Hatemate uf g _Kotimair ol y L Asumsie sl y |

e N2t 1.6, -2 1.35, -} .45, -3 4.6, -2 3, ) ., -2

e a2

ne» o LI, -3 p et ER TIPS Y 176, <3 p s 1DY 3.8, -3; g v .26 L8, -1, 4 8 5.48, <3 g 183 e, v ey 04, KV -3

AL v 125

o

R 8, % [NTNETTRTIN ) IR 11, 2y 0.22, -2 g = L0 132, N g m L8 s.01, live-@ 9, K )

AL = 128

nre .4 23 1.6, 2 2%, -1 a8, -3 443, -2 m, -1 193, 12 2.92, -1 M, K

™.

ne» K] 1.0, S p el 1.0, -k g0 o LI, -3 pe 03 1.8, I g0 186, - q " M 338, Jig" 100 oab, chir - 8, KK = B

et

“re " Y o8, =Y p o8l 432, 7l g - e, 4 pa . 2.1, -2 q= .4 .3, -2, g v 100 L3, <3 g0 1A 5.0 -l e ooy +13, BOC « 4

e

Table 4.6
CPU Tise in L% Norm. -1 Reduction in Discrete
Number of in Seconds Max|U, | - Ui -l Maximum Error L2 Norm. of Error in Hulti .l L2 Norm. of Residual in
Unknowns on CDC 7600 i,i 1is ' in x-derivative of Error x-derivative i, J Last Cycle and Number of Cycles
12 x 12 016 4 29, -2 5 50, -1 98, -1 42, NCYC = 3
ALPHN = .125 .0 1.46, -1 1.29, 1.95, 0 1.50, 2.98, .42, =
2xu .082 8.55, -7 1.45, -5 1.05, -5 1.48, -6 3.56, 1 .52, NCYC = 21
TOL = 10
12 %12
ALPHM = .125
IRELAX = 4 017 8.34, -2 6.34, -3 1.37, 0 1.02, -1 3.32, 1 .02, NCYC = 3
12 x 12 : n
IRELAX = 4 .080 1.89, -7 1.49, -8 3.17, -6 2.22, -7 3.57, 1 .24, NCYC = 11
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V. CAVEATS AND EXTENSTONS
The examples of Section IV all exhibit good behavior. We begin this

section with three examples which do not. The first is

-Au -~ gu=Fon Q= (0.1) X (0.1)

g% = 0 on 3

One can solve this problem with BOXMG until &€ becomes too large; &€ is too
large when relaxation sweeps on grid 62 magnify, instead of reduce the
error. The remedy would be to change BOXMG to allow the coarsest grid G1
to be finer; with this remedy BOXMG could be extended to handle some
non-definite symmetric problems. See the discussion in Section IV of
reference 1.

Another example of poor behavior is for a difference operator with a

template like

~-£ -£ -1
- 2+6& -¢ (16)
-1 - -],

where £ << 1. None of the relaxation options in BOXMG provide good

smoothing on the finest grid for such an operator. The remedy is to write
a block relaxation routine which relaxes the strongly coupled one dimen-
sional sets as blocks; in this case they are the southwest to northeast
diagonals. Such a template as eq. (16) can arise in physically meaningful
problems; see reference 8, for example. (In reference 8, however, situa-
tions like eq. (16) would arise so infrequently as to be not worth the
effort of special treatment.)

A final example of poor behavior is when the difference operator on
the finest grid is close to the skewed Laplacian (or any operator with

strong connections like the skewed Laplacian):

-1 - -1
-g 4(1+g) -¢
-1 - -1 ’
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where € << 1. This situation was discussed in reference 3. Here we know
of no remedy that would fit into the general framework of BOXMG.

Several extensions of BOXMG are possible and are under investigation.
Two, fairly straightforward, are to symmetric systems and three dimen-
sional problems. The third, more difficult, is to nonsymmetric equations.
The fourth is to handle equations on arbitrary regions without resorting
to embedding. The fifth is 1local mesh refinement - both fixed and
adaptive. For all except the first two extensions, it is not clear at
this time how much of the black box philosophy can be retained, and in the
third and fourth extensions, it is not clear if there is a uniform
strategy for both serial and vector machines.

Finally, we thank Achi Brandt for advice that improved this paper.

Vii. CODE LISTING
[In, LA-UR, list.]

A listing of BOXMG is contained in Ref. 7, which may be otained by
requesting it from:

J. E. Dendy, Jr.

T-7, MS-610

Los Alamos National Laboratory

Los Alamos, NM 87545
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HIGH ORDER MULTI-GRID METHODS TO SOLVE THE POISSON EQUATION

Steve Schaffer
Colorado State University

I. Introduction

This paper treats several high order multi-grid methods based on finite
difference discretization of the model problem:

(0) LU =F on the interior of Q
U=aG on 98

Here, L is the Laplace operator,  the unit square, and the functions F and G
are at least piecewise continuous.

In section II, a fixed high order FMG-FAS multi-grid algorithm (which
underlies each of the high order methods) is briefly discussed. 1In section
ITI, the high order methods are described. In section IV, results are pre-
sented on four problems using each method with the same underlying fixed FMG-
FAS algorithm. It is noted that optimal efficiency of any one of these meth-
ods is not attained with this fixed algorithm, the purpose of the experiments
being, rather, to give a comparative point of view for the different methods.

II. The Fixed High Order FMG-FAS Algorithm

A sequence of uniform grids, Qh, on the unit square is given, with in-
creasing mesh sizes h = 1/2, 1/4,...1/64. For each h, the discretization of
(0) is denoted by:

(D L: Uh = Fh on the interior of Qh

Uh = Gh on the BQh

where Lz is a finite difference operator indexed by s that approximates L, Gh

is the injection of G onto Qh, and Fh is the injection of F onto Qh (or some
weighted average of F to be described later).

The full approximation scheme (FAS) multi-grid cycle is used to solve
equations of the form (1) (see ref. 1). We describe it in the following to-
gether with several multi-grid features that are used in all of our experi-

ments. Subsequent reference to an FAS cycle will always imply L: is second
order. The grid function, uh, will represent the current approximation held

on Qh. We first define the two-level FAS cycle by the following four steps.
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1l. Given some initial approximation, make 2 Gauss-Seidel
relaxation sweeps on (1) using checkerboard ordering
of the grid points (ref. 2).

2. Solve the FAS coarse grid equation on QZh given by:

2h 2h _ . 2h_2h h 2h ,h _.hh
(2) LSh'U SR S Sl s SG A AT
~ on the interior of QZh
p?h < %P ~ on 3l

. 2h .
Here, the grid transfer operator 1 represents injec-

h
tion and II.Eh represents "full weighting" defined by
the stencil:

1
16 (

=N

).

=N
SN

3. Correct the current approximation on grid h via:

(3) uh « uh + Igh (UZh - Iihuh)

where the symbol "<«'" represents replacement and Igh

represents interpolation (linear for second order
methods and cubic for fourth order methods).

4. Repeat step 1 with 1 relaxation sweep using the cur-

h e . .
rent u for the initial approximation.

A multi~level FAS cycle (or, simply FAS cycle) is then defined recur-

sively by using this two-level FAS cycle to solve (2) on QZh and similarily

on Qah. Continuing in this way until equation (2) is formed on grid h = 1/2

where the equation is then solved exactly. We demand two such cycles on each
coarser grid, except the coarsest, before correcting the approximation on the
next finer grid (step 3). This is called a "W" cycle and can be represented
by the following diagram (for h = 1/2, 1/4, 1/8, 1/16).

= 1/16
1/8
1/4
= 1/2

== g = = 5
ft

where o, l and / represent, respectively, relaxation (step 1 or 4), fine to
coarse grid transfer (step 2) and coarse to fine correction (step 3).

Our high order full multi-grid (HFMG) algorithm begins on grid h = 1/4.
Using a zero initial guess, one FAS cycle (second order) is made on (1). The
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resulting approximate solution is then cubically interpolated to grid h = 1/8
and is used as an initial approximation for one FAS cycle on equation (1) for-
mulated on this grid. At this point, the final approximation is used as the
initial approximation for one of the fourth order methods described in the
next section. This fourth order method is then used successively on the next
three finer grids using the cubic interpolant of the final approximation on
the previous grid as the initial guess. The second order FMG algorithm (ref.
3) proceeds as above without the switch to higher order.

III. High Order Methods

The following finite difference operators are considered.

L? — The usual second order five point star operator.

Lg ~ The operators 32/8x2 and 82/3y2 are each approx-
imated in their respective directions by fourth
order finite differences. For example, at a
point (x,y) ¢ Qh, leaxz is approximated by the
stencil.

%) 1/120% (-1 16 -30 16 -1),

= JX
when h <x<1-h, and by

(5) 1/12n° (10 -15 -4 14 -6 1), _
when x = h. The symbol " " marks the central
coefficient.

Lg — The operator used in Mehrstellen Verfahren. A
second order finite difference operator is used
with a weighted average of F to produce the fourth
order equation:

2 1 4 1 h 1
(6) 1/6h° (4 -20 4), U (x,y) = 1/12 (1 8 1), F(x,y)
h h
1 4 1 1
h . h .
L4 - This operator agrees with L2 at all points ex-—

cept those whose distance to the boundary is h.
At these points, where noncentral differencing

occured in Lg, the Mehrstellen Verfahren (6) is

used.
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The fourth order methods are described on agiven grid h where the ini-
tial approximation is obtained by the HFMG algorithm. Relaxation will always
refer to Gauss-Seidel with checkerboard ordering of the points.

MG2 -~ The second order FMG-~FAS algorithm on equation (1),
which is used here for comparison.

MGW2 -~ The second order FMG-FAS algorithm using the full
weighting of F for F in equation (1).

Hs ~ High order relaxations. Make three relaxation
sweeps on:
(7N L: Uh = Fh

where s = 2, 3 or 4. Next, solve the coarse grid

equation:
2h . 2h _ . 2h _2h h 2h h h h
(8) Ll U = L1 Ih u + IIh (F - LS u)

using an FAS cycle (second order). Then correct
the current approximation, u", using equation (3)
and make one relaxation sweep on (7).

D ~ Outerloop defect corrections (ref. 4). Make one
relaxation sweep on the second order equation (1).
Form the equation:

(9) L? = 4 L? L L: W, s=2,30r4

on grid h and make an FAS cycle on (9) using only
one relaxation sweep on grid at step 1.

T - The method of T-extrapolation is based on the as-
sumption that the second order truncation error

function, Th, has the local expansion:

Fh 2

(10) ey o B = an? 4 o).

where the function A is independent of h. Extrap-
olating, we obtain:

2h

(11) . =-§ (r2h

-+ omd.
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If the grid function, uh, is reasonably close
to the second order solution of (1), then it
is not difficult to show that if we define:

2h _ 4 ., 2h 2h h _2h 2h .h h _.h

az =2 a2 - PN -t al W - M,
then

(13) Tih —-% 2P -y - om®.

Thus, it follows from adding TZh to the grid 2h

h
version of (1) that a fourth order equation is
produced there. The method, then, proceeds as
follows. Make one relaxation sweep on the second
order equation (1). Form the extrapolated grid
2h equation:

20 42h _ p2h  2h

(14) ;

and solve by an FAS cycle. Then correct the cur-

rent approximation, uh, using equation (3). At
this point, a relaxation sweep on the second order
equation (1) is performed only to smooth out the
error for further extrapolations on the next finer

grid., Otherwise, the corrected uh will be the fi-
nal approximation for the T-extrapolation method.
Wt - The method of weighted T-extrapolation is exactly

the same as T—extrapolation except that Fh is de-
fined by the full weighting of F given by:

1) Feuy) =2 F(x,y) = F(x,y) + B(x,y)h° + 0(0*).

) w/2

[l N
N R
[ N

at points (x,y) € Qh. The function B(x,y) is in-
dependent of h, The same arguments used in T-
extrapolation carry over here owing to the simi-
larity of the expansions in (10) and (15).

IV. Numerical Results

In our experiments, the solution to the continuous problem was preselec-
ted and the functions F and G were defined accordingly.
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PROBLEM 1 (smooth solution)
U(x,y) = sin (wx) sin (27my)

PROBLEM 2 (oscillatory solution) On grid h = 1/16 the solution con-
tains an average of 4.2 grid points per wavelength.

U(x,y) = sin (v (7x + 96))

PROBLEM 3,4 (jump discontinuities in the nth derivative of the solu-
tion) Using the functions

y - x2 + x - .75

T(x,y) =
and
_ (1 T(x,y) >0
C(X!y) _1 T(X,y) < O

we define

EXP (C(x,y) T (x,y))

U(x,y)

where n = 2 in problem 3 and n = 4 in problem 4. The dis~-
continuity lies along a parabola which passes through the
central grid point for all grids and two boundary grid
points on all but the coarsest grid.

Operation counts were made for every step of the multi-grid algorithm,
including residual formation and transfer and interpolations, where one mul-
tiplication was counted as two additions. For each method, the fixed algor-
ithm accumulated C-Nh operations to obtain an approximation on grid h, where

Nh is the total number of points on grid h. We report the constant C occur-

ring for each method.

Method | MG2 | Mew2 | © | wr | H44 | H49 | H99 | D44 | D49 | D99
C ( 71 , 85 ' 85 ! 100 f 141 | 141 f 148 ( 107 f 107 { 117

In the experiments, the weighted discrete Lz—norm of the true error,

Eh =0 - uh, taken at the end of the iteration on each grid h, is given by:

h (2.% .,
Gy (Eij) ) h

A(h) i
J

il

where the summation is over the interior points of grid h. This discrete L2—

norm makes the norms on different grids comparable. Table 1 1lists A(h) (h =
1/16, 1/32 and 1/64) for the 10 methods on problems 1, 2 and 4. The ratios
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A(2h)/A(h) are also given to show the relative gain in accuracy by going to
a finer grid.

In problem 1, methods MGW2 and Wt give consistently smaller errors than
methods MG2 and 1, respectively. This relationship is also found, though
less significantly, in problems 2 and 4. The operator, Lg » gives the smal-

lest errors in both the high order relaxation and defect correction methods
for problems 1, 2 and 4. The operator Lg, gives the largest errors. It
should be noted that the Mehrstellen Verfahren discretization, Lg, is special
to our model problem, but has its generalization in the HODIE methods (ref.
5).

The second order errors obtained by method MG2 on problem 3 were:

A(L/16) = .90 x 1073, A(1/32) = .66 x 107> and A(1/64) = .14 x 107>, The
fourth order methods all gave very nearly the same errors as MG2 which would

be expected for such a nonsmooth problem.
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TABLE 1 - COMPARISON OF ERRORS

1 1 1 1l 1 1 1
PROBLEM METHOD A(16)  A(32)  AGGH)  A(I6)/AGE) A(Z) /AGH)
1 Me2 | .55¢-2) |.14(¢-2) |.34(-3) 3.9 4.1
MGWZ | .58(-3) {.14(=3) |.35(~4) 4.1 4.0
T .30(=3) |.19¢-4) |.12(¢~5) 16. 16.
Wr .19(=3) |.47¢=5) |.17(=6) 40. 28.
Hy .36(=3) {.22(-4) {.89(=6) 16. 25.
H 11(=3) |.71¢=5) |.44(=6) 16. 16.
Hy .26(=4) | .14¢=5) | .83(=7) 19. 17.
D, .75(=3) |.38(=4) | .16(=5) 20. 2.
D, .43(=3) |.19(=4) | .90(=6) 23. 21.
Dy 11(-3) [.49(=5) | .21(-6) 22. 23.
2 MGz | .17(+0) |.39(~1) | .95(-2) 4.1
MGW2 | .63(-1) |.15(~1) | .39(-2) 3.8
. .27(+0) |.84(=2) | .42(-3) 32, 20.
Wt .68(-1) |.13(~1) | .77(-3) 5. 17.
H, .20(+0) | .18(~1) | .12(-2) 11. 15.
H, 43(-1) |.30(=2) | .22¢-3) 14. 14.
Hy .36(-2) | .81(~3) | .88(-4) 4. 9.
D, .20(+0) | .18(¢-1) | .15(-2) 11. 12.
D, L42(-1) | .66(<2) | .42(-3) 6. 16.
D4 .37(-1) | .33¢<2) | .25¢-3) 11. 13.
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TABLE 1 - COMPARISON OF ERRORS (CONT'D.)

1 1 1l 1 1 1 1
PROBLEM METHOD A(16) A(32) A@GL A(AB)/A(GY)  A(32) /AGH)
4 MG2 | .24(=3)| .60(~4) | .15(-4) 4.0 4.0
MGW2 | J14(=3)| .36(-4) | .91(=5) 3.9 4.0
J13(=4)| .94(=6) | .64(=7) 14. 15.
W 1= .67¢=6) | .36(=7) 16. 19.
H, .59(-4)| .43(=5) | .30(=6) 14, 14.
H, L24(=5) ] .24(-6) | .18(=7) 10. 13.
Hy .25(-5)| .21(=6) | .16(=7) 12. 13.
Dy J73(=4) | .55(=5) | .41(=6) 13. 13.
D, J17(=4) ] .15(=5) | .12(-6) 11. 13.
Dy .58(=5)| .44(=6) | .26(~7) 13. 17.
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Accelerated Convergence of Structured Banded Systems
Using Constrained Corrections¥*

Karl Kneile
Sverdrup Technology, Inc.

1. INTRODUCTION

The goal of this paper is to describe an efficient iterative method
for solving a structured banded system of equations. While the method
was developed for a full potential flow program, it will be presented in
general terms applicable to a wide range of problems. The central issue
here is the solution of a large linear system of equations. The linear
system may arise directly in the problem or may result from an iteration
in a nonlinear problem. For large 2-D and 3-D applications, this linear
system becomes increasingly expensive to solve directly. As a result
efficient iterative methods have become attractive for large problems.
In the nonlinear cases, these iterations may be effectively merged to
improve convergence rates.

Conventional iterative methods (Jacobi, Gauss~Seidel, ADI, etc.)
rapidly reach a state where convergence rates are limited by the large
eigenvalues of the system. This phenomenon is especially restrictive for
large problems. Various approaches have been tried to accelerate
convergence. Relaxation made some modest gains, but obtaining an optimum
or near optimum parameter was sometimes difficult. Others tried more
elaborate iterative methods (incomplete Crout, strongly implicit
procedure (SIP), and SIP/conjugate gradient) with considerable success.
However, the most dramatic improvements have been seen recently with the
revival of multigrid concepts.

The method presented in this paper uses a basic iteration step
(incomplete Crout reduction), a dynamic relation step, and a multigrid
concept of constraining iterative corrections.

* The work reported herein was conducted for the Arnold Engineering
Development Center (AEDC), Air Force Systems Command (AFSC) by
Sverdrup Technology, Inc., an operating contractor for the AEDC.
Further reproduction is authorized to satisfy needs of the U. 3.
Government.
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2. METHOD OF CONSTRAINED CORRECTIONS
The method of constrained corrections uses a variational form of the

problem. This variational form may be part of the problem definition or
may be artificially created as described later.

The discretized variational form may be represented as L(¢), where L
is a scalar function of the n component vector ¢. The components
of ¢ are obtained by solving the n simultaneous equations

F = 3L/3¢ =0 (1

An iterative procedure (Newton's) for solving this system is

where (2)

§=¢,,4 % »xr=-F ,and A= BF/30|; = a%L/3¢° |,

For linear problems the iteration process is trivial ending with the
first iteration.

If a variational principle is not part of the problem, one can define

158y = 18Tas - &' (3)

and use

31" /38 = 0 (%)

as the variational form. This is equivalent, both here and in later
considerations, to using

8L(¢i+6)/86 =0 (5)

coupled with Newton's method if (5) is nonlinear in §. The method of
constrained corrections defines ¢ as

ck (6)

O
!
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The vector k has p < n components. The matrix C prescribes each
component of § as a linear combination of the components of k. It will be
assumed that C is of rank p (i.e., the columns of C are linearly
independent). This is equivalent to imposing (n-p) linear combinations
of the components of § as zero. That is

c's =0 (7)

where C¥ is an (n-p) x n matrix. It is more convenient to use these
constraints in the form of (6).

Substitution of (6) into the variational form results in the system
of equations

CTAC k = CTr (8)

for the unknown k vector. The § vector is then obtained from (6). With
judicious selections of C and k, the convergence rate can be
substantially improved.

3. DYNAMIC RELAXATION

Consider again the basic linear system (2). When using an iterative
method, one obtains an approximate § denoted by ¢&_,. By letting C in (6)
be the vector 6a’ the relaxation parameter k is then given by

x = &Tr/8 a8 (9)
a a a
The iteration then takes the form
= 10
¢i41 = ¢ T X6, (10)
The residual r in (9) is the original residual vector using ¢i and not
from using ¢i+<5a .

4, INTERPOLATED FORM

It is easier to describe this form for one dimensional problems. The
components of ¢ are associated with a positional value along this dimen-
sion. As mentioned earlier, conventional iterative methods rapidly reach
an asymptotic convergence limited by the larger eigenvalues. It is well
known that these iterations rapidly remove the smaller wavelength compon-
ents, leaving the smooth longer wavelength components. Conventional
multigrid methods exploit this smoothness to justify using a coarse grid
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operator. This paper will also take advantage of this smoothing
property, but will direct emphasis towards the smoothness of the
correction vector §. A basis vector §_ 1is selected. The correction
vector is then constrained to the following form

= = I (11)
S _cab_ (:B] 5b

In actual practice the components of 6§y, are interspersed within § and the
rows of B are merged with the rows of the identity matrix. The above
representation (separated I and B) will be used to simplify notation.

For this special case the constraints take the form

* }
c*s = [%.-%] § =0 (12)
i

The B matrix represents interpolation coefficients for the nonbasis
components. Solutions of

cTac 5, = cty (13)

coupled with (11) will then "solve the original problem" subject to the
constraints. The effectiveness of this constrained form depends upon the
form of interpolation used, the smoothness of §, and the difficulty in
so0lving the new system (13). The smaller the dimension of 6b’ the
simpler system (13) is to solve. However, more iterations are needed to
precondition the smoothness required for effective interpolation.

The dynamic relaxation step described in the previous section can be

used to improve overall convergence. The relaxation factor may be
calculated using the basis éb'

T T T T
k = 6b(c r)/ch(c AC)(Sb (14)

5. MULTIGRID
The constrained corrections method described in the previous section

can be easily adapted to a multigrid concept. A nested sequence of basis
vectors is defined by

= C,9; i=1,2,""",m (15)

4

8
i-1

c, =
i

288



where 60 represents the original fine grid and §_ the coarsest level with
the fewest components. The B; are interpolation coefficients from the
ith jevel to the (i-1) level. The above interpolations may be combined
to form

§

Il
v}
o

o) i i

(16)
Py =CCp vor G D56

Il
(@]
0
@]

The constrained system of equations is
DEAD. §, = Dor (17
These equations easily lend themselves to the following iterative
algorithm.
A smoothing pass is made on the fine grid aystem.

AS = r (18)

The ¢ vector is updated by (10), whereby (18) now represents the next
iterative pass. A compression step is taken to obtain the system

Al6l =
where T

Al = DlADl (19)
and T

rl = Dlr

A smoothing pass is now made on this system. The ¢ vector is again
updated and the next iterative pass is taken at the second level

2,0, = 1,
where 2 = plap
2 T2772 (20)
and T
r2 = D2r

The process is repeated down through the coarsest level.

The above describes a multigrid cyecle. This cycle is then repeated
until sufficient convergence is obtained. Many variations of the above
algorithm are possible. A few of these are compared in Section 8.

A computational advantage can be obtained from the nesting or
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recursive definitions of the Dj. The next level system can be
calculated directly from the current level

T
i1 - CiaPiCia (21)
r CT r,
i+l i+l i
It is not necessary to calculate the updated residuals at the fine
grid level. They may be calculated at the current ith 1evel and then
compressed down one level.

A

6. STRUCTURED BANDING

Consider those problems where a quantity ¢ is to be determined over a
2-D or 3-D space. The space is discretized by an (nq x np) or
(ng1 x np x n3) grid. The A matrix in (2) takes a structured banded
form. That is, only a few of the diagonals of A have nonzero elements.
The particular structure of A depends upon the approximations used in
describing the original equations at the grid points. This paper will
cover the details for a nine diagonal structure typical of a 2~D finite
element approach. Adaptations to other type problems should not pose any
difficulties. Occasional comments concerning other type problems will be
made at appropriate places.

The structure of A can be considered as a block tridiagonal system
where the blocks are also tridiagonal. This simple structure allows
computationally efficient smoothing algorithms. It is therefore
desirable to maintain this structure through the multigrid levels. This
imposes limitations on the interpoclation matrix B. For simplicity, a 1-D
case will be described first. The structured banded A matrix is
tridiagonal. In order to maintain this tridiagonal structure, the
interpolation for any point must be limited to a nearest neighbor
principle. That is, an interpolated point is a function of only the two
neighboring points, one on each side. This suggests a linear
interpolation.

Figure 1 depicts a case where the § vector has been smoothed. The
corresponding C matrix has the form (Note: The rows of B and I are

merged) — —
1 1/2
- 1/2 1 2/3 1/3
c = 1/3 2/3 1 3/4 1/2 1/4
1/4 1/2 3/4 1 (22)
L -
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In the typical multigrid patterns where every other point is used, C has
the following form for a nine point to five point compression.

.rl— 1/2 ]
. /2 1 1/2
¢ = 1/2 1 1/2 (23)
/2 1 1/2
/2 1]

The nearest neighbor principle for 2-D problems is shown in
Figure 2. The coarse grid basis is represented by solid dots. The open
circles are interpolated points. The arrows point to the basis
components that are used for interpolation. This interpolation can be
factored into two 1-D steps. Figures 3a and 3b show the two steps.  The
first step reduces from a 5 x 5 grid to a 5 x 3 grid. The second then
reduces down to a 3 x 3 grid. The same principle will factor a 3-D
problem in three steps.

Interpolation for unequal spacing and irregular geometries is more
involved. A convenient alternative is to interpolate as if the geometry
were regular with equal spacings. This retains the calculations in a
simple form. The result is a "nonlinear form" of interpolation. The
longer wavelength information is still passed down to the coarser level.
The interpolation errors, as with linear interpolation, are short
wavelength in nature and are reduced with the next smoothing pass at the
current level.

7. SMOOTHING PASS

One of the key elements of the multigrid algorithm is that the
wavelength components comparable to grid size must be damped before going
to a coarser level. Fortunately, this is the strong point of the
conventional iterative methods. The method emphasized in this report is
incomplete Crout reduction. Two variations are used in this report. The
methods are identical to a complete Crout reduction with the following
modifications during the forward pass. In the short version when zeroing
an element below the main diagonal, all operations which modify an
off-diagonal element are not performed. The result is a quick efficient
iteration which damps out the short wavelength error components. In the
long version, all operations which modify the nonzero structured banded
elements are kept. All other operations which would modify zero elements
are not performed. The long version has better iterative properties at
the expense of the additional work required. For the nine point star 2-D
case, the increase in operations is about 60%.
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8. TEST CASE

The preceding methods were used to solve Laplace's equation on a
rectangular grid. Dirichlet conditions were imposed at the boundaries.
The primary goal of this test case was to verify the method and help in
comparing alternatives. The system (2) was obtained using isoparametric
quadrilateral finite elements. The basic algorithm consisted of the
following. A multigrid cycle of (m + 1) levels was used (m = O means
fine grid only). The coarser levels were obtained by removing every
other point in each dimension. Each level contained one smoothing pass.
{The short version of incomplete Crout followed by a dynamic
relaxation.) The results (convergence rates) are given in the number of
work units required to reduce the error by one order of magnitude. A
work unit is defined as the time to set up a fine grid system and make
one smoothing pass. It was assumed that the time spent at a lower level
was one fourth that of the next higher level. Fer comparison with
conventional multigrid methods it is also assumed that the time required
to compress down to the next lower level is equivalent to that of
evaluating the operator at that level. For simple linear problems such
as Laplace's or Poisson's equation, the operator evaluation should be
quicker. However, for nonlinear problems such as full potential flow,
the compression step will probably be faster. The rates given are
estimates of the asymptotic rate. They were obtained by iterating until
the rates "leveled off". In cases where convergence showed cyclic or
erratic behavior, an average of a selected final group of iterations was
used. Most of the results are given for 9 x 9, 17 x 17, and 33 x 33
grids with equal spacings. A few results where nq # np and where
AX # AY are given at the end of the section.

Table 1 shows the convergence rates for the basic algorithm.

o 0 1 2 3 4 5
nixno
9x ¢ 3.8 1.1 1.2 1.2
17 x 17 11.5 2.1 1.3 7.3 1.3
31 x 31 39.7 6.6 1.8 1.3 1.3 1.3

"TABLE 1. Convergence Rates for Basic Algorithm
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Without multigrid levels, the convergence rate rapidly deteriorates with
increasing grid size. Using multigrid levels improves the convergence
rates for each grid size, and the results appear independent of grid
size. The table indicates that the extra coarse grids are not needed,
but nothing is lost by the conservative attitude of using more levels
than needed. For comparison purposes the 1.3 convergence rate is
equivalent to an error reduction factor of 0.17 per work unit or 0.093
per multigrid cycle. This table should be used as a reference for
comparison of alternative methods given in this section.

Table 1 considers the case where the nq x no grid points are all
interior to the boundary. The boundary conditions had been transferred
to the right hand side of the equations. An alternative would be to
include the boundary points as part of the nq x np grid. The
boundary points have no error and the neighboring points are interpolated
using this zero error boundary. The results are shown in Table 2.

m 0 1 2 3 4 5
nixnp
9x9 2.7 1.3 1.2 1.2
17 x 17 9.2 2.3 1.2 1.3 1.3
31 x 31 34.3 9.5 2.0 1.4 1.4 1.4

TABLE 2. Convergence Rates for Alternate Boundary Conditions

The faster convergence at the zero level is due to the fewer non-zero
error components. However, where multigrid levels are used, this trend
is reversed. The difference is small though, when sufficient levels are
used. Ease of application should probably be the deciding factor.

Table 3 shows the results when a Jacobi ADI method is used for
smoothing. The dynamic relaxer was applied after each of the two ADI
sweeps. The multigrid convergence rates are about the same as the incom-
plete Crout reduction. The main reason for choosing the incomplete Crout
was its efficiency. It is easily programmed. For large systems it re-
quires 5 divides (with common divisor), and 12 multiply-add combinations
per equation. If applied to a 5 point star system obtained from
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finite differences, the operation count is 3 divides and 6 multiply-adds
per equation.

o 0 1 2 3 4 5
nqxno
9 x 9 6.6 1.4 1.2 1.3
17 x 17 21.1 3.5 1.5 1.4 1.3
31 x 31 76.6 12.0 2.6 1.5 1.4 1.3

TABLE 3. Convergence Rates for ADI Smoothing

Several alternative methods of cycling through the multigrid levels
were tried. The order did not significantly change the asymptotic
convergence rates. That is, it makes no difference whether one starts
with the fine grid and works down to the coarse or vice versa. Attempts
at weighting the coarse grid passes were also tried. Table U4 shows
results where the number of passes at each level varied linearly from 1
for level 0 to 6 for level 5.

n 0 1 2 3 y 5
n{xns
9 x9 3.8 1.4 1.6 1.6
17 x 17 11.5 1.4 1.6 1.7 1.7
31 x 31 39.7 3.6 1.6 1.7 1.7 1.7

TABLE 4. Convergence Rates for Weighted Passes

Some improvement is noticed for a few cases where the number of levels
are insufficient. However, when sufficient levels of grid are used,
equal weighting (one per pass) is better. The degradation of convergence



rate is due to the additional work involved. If the rates were given on
a "per multigrid cycle"™ basis, they would be about equal to those using
one pass per level. It is important to emphasize that these are
asymptotic rates. It was noticed that the weighted cycle was superior in
the initial stages. This was attributed to the smooth errors present
with the initial guesses. Such a phenomenon is likely with actual
problems. Therefore, it is suggested that the early passes be weighted
towards the coarser levels with later passes of one per level.

Table 5 shows results without using the dynamic relaxer.

n 0 1 2 3 4 5
nqxnp
9x9 6.7 2.0 1.3 1.3
17 x 17 20.8 5.5 1.6 1.4 1.4
31 x 31 73.0 18.6 4.9 1.5 1.4 1.4

TABLE 5. Convergence Rates Without Dynamic Relaxer

While the relaxer made significant improvements at the zero level, only
modest gains were achieved when multigrid levels were used. Since its
cost is minimal, the dynamic relaxer was retained in the basic
algorithm. Its potential gain for other applications may be
significant. For example, a 25% savings in time was obtained in the
multigrid/ADI cases. For comparison purposes, a fixed optimum parameter
was determined by trial and error. Convergence rates for the dynamic
relaxer and the fixed optimum were essentially the same.

Simultaneous relaxation parameters were also tried. The corrections
at each level were saved and used as columns of C in (6). The system of
equations (8) can then be solved for the relaxation parameters
(components of k). The results were disappointing. Only trivial gains
were noticed, not worth the extra work and storage required.

An interesting alternative is to use a constant times the residuals
as the smoothers. The dynamic relaxer can be used to determine the
unknown constant. Convergence was erratic with rates in the 2.0 tc 4.0
range. For linear problems, this rate would be attractive since the time
per iteration is minimal. For nonlinear problems, calculating the fine

295




grid system and compression to coarser levels takes most of the time, and
the overall rates would be considerably slower. A problem with this
alternative is the relative scaling of each equation.

Several rectangular grids were also tried. The convergence rate for
a 9 x 33 grid was in the 1.2 to 1.3 range that was obtained for the
square grids. The incomplete Crout smoother is order dependent. That
is, different results are obtained depending upon whether the grid is
numbered by rows or by columns. The convergence rates for the 9 x 33
grid were essentially unaffected by the direction of node ordering.
Ordering along the short dimension gave less than a 2% improvement over
the other direction.

Figure U shows results for varying aspect ratios. A 33 x 33 grid was
used in this study. The solid line shows the results using the short
incomplete Crout reductions. The nodes were numbered in the Y
direction. As the figure indicates, the convergence rate rapidly becomes
impractical for even moderate aspect ratios. Numbering the nodes in the
X direction gave the same behavior. The dashed line shows results for
the long version of incomplete Crout reduction (nodes numbered in the Y
direction). The worst convergence ratio occurs at an aspect ratio of
about 10. About twice as many iterations are needed at this aspect
ratio. At larger ratios, the convergence rate rapidly improves.

Ordering the nodes in the X direction gives the results shown by the
dotted line. Except for a small increase at the smaller aspect ratios,
this ordering gave better results. The unexpected improvement at large
aspect ratios is probably due to the regular rectangular geometry.
Extrapolation of these results to more general geometries would be
speculative. Further study is needed particularly in the selection of
the smoother.

9. SUMMARY

A constrained corrections algorithm was described in the previous
sections. The method was used to solve Laplace's equation on a
rectangle. A convergence rate of 1.3 fine grid work units per decade
reduction in error was obtained.

The algorithm uses a multigrid concept with the following
components.

(1) Incomplete Crout reduction is used to smooth the errors.
(2) A dynamic relaxation parameter is used.
(3) Coarse grid systems are obtained by constraining the corrections

at the fine grid level. These constraints are in the form of
simple interpolation.
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The method has some drawbacks. The system of equations needs to be
stored. Recalculation of the fine grid at each level would increase the
computational effort by a factor approximately proportional to the number
of levels used. For nonlinear problems, updating the nonlinear parts can
only be accomplished at the fine grid level. Another drawback occurs
with the simple forms typical of finite difference methods. For example,
a 2-D finite difference method usually uses a 5 point star rather than 9
points. The interpolation used in this paper will not maintain this 5
diagonal system, but expands to a 9 diagonal system.

The main advantage of the method is the influence of the
interpolation formulas. The coarse grid systems contain not only the
"average residuals", but fine grid geometry information and the implied
interpolation of the solution back to the fine grid. It is expected that
this unification between the multigrid phases will prove advantageous
when general distorted geometries are used. The method is easy to use
and does not require guesswork for determining parameters. Simple
interpolation forms are used, producing efficient iterations.

It is the opinion of the author that the advantages will outweigh the

disadvantages. A 3-D full potential program is being developed using the
method in this paper.
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10. NOMENCLATURE
Coefficient Matrix for a linear system of equations
Coefficient Matrix at ih multigrid level
Interpolation coefficient matrix

Interpolation coefficient matrix from level i to level
(i-1)

Augmented interpolation coefficient matrix

Augmented interpolation coefficient matrix from level
i to level (i-1)

Matrix defining linear constraints implied by C

Interpolation coefficient matrix from level i to fine
grid

Vector defined by 3L/3¢

Vector of unknowns in constrained correction
formulation

Variational form
Alternate variational form

Maximum number of levels used (m = O means fine grid
only)

Number of nodes in a given direction of the grid
Residual vector

Residual vector at ith level

Correction vector

Correction vector approximation

A basis vector used for interpolation

Basis vector at the ith level

Solution vector

ith jteration for the solution vector
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()T

oL/3¢

9F/3¢

3%L/3¢2

Transpose operator

A vector composed of derivatives of L with respect to
elements of ¢.

Matrix composed of derivatives of the elements of F
with respect to elements of ¢. The F components
determine rows and the ¢ components determine
columns.

Alternate notation for 9OF/3¢ . The matrix composed

of second derivatives of L with respect to elements
of ¢.
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